...
【24h】

From Heisenberg to Godel via Chaitin (vol 44, 2005)

机译:从海森堡到柴德尔(Chaitin),戈德尔(2005年,第44卷)

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In 1927 Heisenberg discovered that the "more precisely the position is determined, the less precisely the momentum is known in this instant, and vice versa." Four years later Godel showed that a finitely specified, consistent formal system which is large enough to include arithmetic is incomplete. As both results express some kind of impossibility it is natural to ask whether there is any relation between them, and, indeed, this question has been repeatedly asked for a long time. The main interest seems to have been in possible implications of incompleteness to physics. In this note we will take interest in the converse implication and will offer a positive answer to the question: Does uncertainty imply incompleteness? We will show that algorithmic randomness is equivalent to a "formal uncertainty principle" which implies Chaitin's information-theoretic incompleteness. We also show that the derived uncertainty relation, for many computers, is physical. In fact, the formal uncertainty principle applies to all systems governed by the wave equation, not just quantum waves. This fact supports the conjecture that uncertainty implies algorithmic randomness not only in mathematics, but also in physics.
机译:1927年,海森堡(Heisenberg)发现“位置越精确,在此刻已知的动量就越不精确,反之亦然。”四年后,Godel证明了一个有限指定的,一致的形式系统,该系统足够大以包括算术运算,这是不完整的。由于两个结果都表达了某种可能性,因此很自然地要问它们之间是否存在任何关系,并且事实上,这个问题已经被反复问了很长时间了。主要兴趣似乎在于物理不完整的可能含义。在本说明中,我们将对相反的含义感兴趣,并将对以下问题提供肯定的答案:不确定性是否意味着不完整性?我们将证明算法的随机性等同于“形式不确定性原理”,它暗示了查伊廷的信息理论不完整性。我们还表明,对于许多计算机,得出的不确定性关系是物理的。实际上,形式不确定性原理不仅适用于量子波,还适用于所有受波动方程控制的系统。这一事实支持这样一种推测,即不确定性不仅在数学中而且在物理学中都暗示着算法的随机性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号