首页> 外文期刊>International Journal of Robust and Nonlinear Control >Fault-tolerant controller design for a master generation unit in an isolated hybrid wind-diesel power system
【24h】

Fault-tolerant controller design for a master generation unit in an isolated hybrid wind-diesel power system

机译:隔离式混合风力柴油发电系统中主发电机组的容错控制器设计

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents a methodology for designing an effective fault-tolerant controller (FTC) through the combination of three control techniques: linear parameter varying (LPV), model reference adaptive control (MRAC), and a proportional-integral-derivative (PID) controller. The proposed FTC is tested in a diesel engine generator (DEG), operating as a master generation unit in an autonomous hybrid wind-diesel power system with a battery storage system (BSS). The control objectives are to regulate voltage and frequency of the DEG and to ensure covering the demand load. Frequency regulation is achieved with the help of an MRAC-LPV scheme combining a PID controller tuned by a genetic algorithm (GA) for maintaining the speed of the diesel engine (DE) in a constant value, and in consequence the frequency of the grid. Voltage magnitude control is performed through a constrained variation of the field voltage of the synchronous generator through a classic MRAC. Different operating conditions of the hybrid power system are applied in order to test the controller's robustness: (i) steady-state operation; (ii) sudden connection of a load of 0.5 MW; (iii) a three-phase fault with duration of 0.5s; and (iv) DE's actuator fault with six different magnitudes. An improved performance is achieved by the proposed scheme over a baseline controller, IEEE type 1 AVR for voltage regulation and a governor with PI controller for frequency regulation. Dynamic models of the microgrid components are presented, and the proposed microgrid and its FTC are implemented and tested in the Simpower Systems of MATLAB/Simulink simulation environment. The simulation results showed that the use of an LPV methodology for designing the MRAC allows the online accommodation of different fault magnitudes in the DE actuator and improves the FTC system performance in comparison with the baseline controller. Copyright (c) 2014 John Wiley & Sons, Ltd.
机译:本文提出了一种通过结合以下三种控制技术来设计有效的容错控制器(FTC)的方法:线性参数变化(LPV),模型参考自适应控制(MRAC)和比例积分微分(PID)控制器。拟议的FTC在柴油发动机发电机(DEG)中进行了测试,该柴油发动机发电机作为带有电池存储系统(BSS)的自主混合风能柴油动力系统中的主发电单元运行。控制目标是调节DEG的电压和频率,并确保覆盖需求负载。在MRAC-LPV方案的帮助下实现了频率调节,该方案结合了由遗传算法(GA)调节的PID控制器,可将柴油机(DE)的速度保持在恒定值,从而保持电网频率不变。通过经典MRAC通过同步发电机的励磁电压的受约束变化来执行电压幅度控制。应用混合动力系统的不同运行条件以测试控制器的鲁棒性:(i)稳态运行; (ii)突然连接一个0.5兆瓦的负载; (iii)持续时间为0.5s的三相故障; (iv)DE的执行器故障有六个不同的幅度。通过在基线控制器,用于电压调节的IEEE 1类AVR和带有用于频率调节的PI控制器的调速器上提出的方案,可以实现改进的性能。给出了微电网组件的动态模型,并在MATLAB / Simulink仿真环境的Simpower系统中实现并测试了所提出的微电网及其FTC。仿真结果表明,使用LPV方法设计MRAC可以在线容纳DE执行器中的不同故障幅度,并且与基线控制器相比可以提高FTC系统的性能。版权所有(c)2014 John Wiley&Sons,Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号