首页> 外文期刊>Measurement and Control: Journal of the Institute of Measurement and Control >Robust motion estimation with user-independent sEMG features extracted by correlated components analysis
【24h】

Robust motion estimation with user-independent sEMG features extracted by correlated components analysis

机译:通过相关组件分析提取独立于用户的 sEMG 特征进行稳健的运动估计

获取原文
获取原文并翻译 | 示例

摘要

Motion estimation from surface electromyogram (sEMG) signals has been studied extensively over the past decades. Nevertheless, it is challenging for novel subjects to adapt to a trained estimation model since sEMG signals inherently contain user-dependent features that interfere with the estimation model and reduce the estimation accuracy. To achieve accurate motion estimation, a strategy of correlated components analysis-based random forest regressor (CorrCA-RFG) was proposed. The proposed CorrCA-RFG firstly uses CorrCA to extract user-independent features related to motion among multiple subjects, and obtain the projection vectors from sEMG data to the motion-dependent feature space. Then, the RFG is trained by the user-independent sEMG features and establishes the estimation model. To validate the effectiveness of the proposed CorrCA-RFG, this strategy was tested on a public dataset and an experimental study and compared to three methods, namely random forest regressor (RFG), canonical components analysis-based random forest regressor (CCA-RFG), and a convolutional neural network (CNN). For both cases, the estimation performance of the CorrCA-RFG outperformed the other three methods. These results demonstrate that the proposed CorrCA-RFG enables robust motion estimation by extracting user-independent sEMG features.
机译:在过去的几十年中,表面肌电图 (sEMG) 信号的运动估计已被广泛研究。然而,对于新受试者来说,适应经过训练的估计模型具有挑战性,因为 sEMG 信号固有地包含用户依赖的特征,这些特征会干扰估计模型并降低估计准确性。为了实现准确的运动估计,提出了一种基于相关分量分析的随机森林回归器(CorrCA-RFG)策略。所提出的CorrCA-RFG首先利用CorrCA提取多个主体之间与运动相关的独立于用户的特征,并从sEMG数据中获取到运动相关特征空间的投影向量。然后,通过独立于用户的sEMG特征对RFG进行训练,并建立估计模型。为了验证所提出的CorrCA-RFG的有效性,该策略在公共数据集和实验研究上进行了测试,并与三种方法进行了比较,即随机森林回归器(RFG),基于典型成分分析的随机森林回归器(CCA-RFG)和卷积神经网络(CNN)。对于这两种情况,CorrCA-RFG的估计性能都优于其他三种方法。这些结果表明,所提出的CorrCA-RFG通过提取与用户无关的sEMG特征来实现鲁棒的运动估计。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号