首页> 外文期刊>International Journal of Plasticity >Constitutive modelling in finite thermoviscoplasticity: a physical approach based on nonlinear rheological models
【24h】

Constitutive modelling in finite thermoviscoplasticity: a physical approach based on nonlinear rheological models

机译:有限热粘塑性本构模型:基于非线性流变模型的物理方法

获取原文
获取原文并翻译 | 示例
           

摘要

This essay deals with a physical approach to formulate constitutive laws of finite thermoviscoplasticity. As proposed, for example, by Besdo (Besdo D., 1980. Zur Formulierung von Stoffgesetzen fur plastisch anistrope/elastisch isotrope Medien im Dehnungsraum, Zeitschr. angew. Math. Mech., 60, 101-103) or Negahban (Negahban, M., 1995. A study of thermodynamic restrictions, constraint conditions and material symmetry in fully strain-space theories of plasticity, Int. J. Plast., 11, 679-724) the whole theory is formulated in the strain space. For the sake of clarity and owing to the stringency required when choosing appropriate internal variables and evolution laws, the layout of the theory is dictated by rheological models. Combined with the concept of dual variables proposed by Haupt and Tsakmakis (Haupt, P., Tsakmakis, C., 1989. On the application of dual variables in continuum mechanics, Continuum Mech. Thermodyn. 1, 165-196), this method ensures the compatibility of the constitutive theory with the second law of thermodynamics. To illustrate the train of thought, we begin with the formulation of a uniaxial model of thermoviscoplasticity and restrict ourselves to kinematic hardening. In order to take thermal strains into account, we dissect the total strain into a thermal and a mechanical part. The mechanical deformation is the driving force for the stress and the thermal strain is a function of the temperature. In addition, we divide the mechanical strain into an elastic and an inelastic part. The stress depends only on the elastic strain, whereas the inelastic deformation is a functional of the process history. It corresponds to that part of strain which remains if the stress is reduced to zero. For the purpose of describing kinematic hardening with internal variables of strain type we introduce a further decomposition and dissect the inelastic deformation into two parts which has a motivation on the microscopic scale. The first part can be interpreted as the spatial average of local lattice deformations caused by dislocation fields (cf. Bruhns, O.T., Lehmann, T., Pape. A., 1992. On the description of transient cyclic hardening behaviour of mild steel CK15. Int. J. Plast. 8, 331-359) and the second can be attributed to inelastic slip processes on the microscale. Based on these ideas, it is straightforward to specify the free energy and to satisfy the dissipation principle in the form of the Clausius-Duhem inequality. The potential relations for the stress, the kinematic hardening variable and the entropy as well as the evolution laws for the internal variables are sufficient conditions for the non-negativity of the entropy production. Based on simplifying assumptions, we find that the Armstrong-Frederick model of hardening is incorporated as a special case. Subsequently. we transfer the structure of the theory to finite non-isothermal deformations. To this end we apply the thermomechanical decomposition of the deformation gradient as proposed by Lu and Pister (Lu, S.C.H., Pister, K.D., 1975. Decomposition of deformation and representation of the free energy function for isotropic thermoelastic solids. Int. J. Solids Struc. 11, 927-934). As prompted above, we define two further decompositions: the first one dissects the mechanical part of the deformation gradient into an elastic and an inelastic part and the second one splits the inelastic part into two further sections. Its first part can be interpreted as an averaged elastic lattice deformation which is caused by dislocations and its second part as an averaged plastic strain due to local plastic slip effects. To develop the constitutive relations for the free energy, the stress, the internal variables and the entropy we consider the rheological model in combination with the concept of dual variables and evaluate the Clausius-Duhem inequality. (C) 2000 Elsevier Science Ltd. All rights reserved. [References: 37]
机译:本文讨论了一种物理方法来制定有限的热粘塑性本构定律。例如,由Besdo(Besdo D.,1980. Zur Formulierung von Stoffgesetzen fur plastisch anistrope / elastisch isotrope Medien im Dehnungsraum,Zeitschr。angew。Math。Mech。,60,101-103)或Negahban(Negahban,M. ,1995年。在完全应变空间可塑性理论中对热力学限制,约束条件和材料对称性的研究,Int.J.Plast。,11,679-724),整个理论是在应变空间中提出的。为了清楚起见,由于选择合适的内部变量和演化规律时需要严格,该理论的布局由流变模型决定。结合Haupt和Tsakmakis提出的对偶变量概念(Haupt,P.,Tsakmakis,C.,1989。关于对偶变量在连续介质力学中的应用,Continuum Mech。Thermodyn。1,165-196),该方法可以确保本构理论与热力学第二定律的相容性。为了说明思路,我们从热粘塑性的单轴模型开始,将自己局限于运动硬化。为了考虑热应变,我们将总应变分解为热和机械部分。机械变形是应力的驱动力,而热应变是温度的函数。另外,我们将机械应变分为弹性和非弹性部分。应力仅取决于弹性应变,而非弹性变形是过程历史的函数。它对应于应力减小到零时剩余的应变部分。为了描述使用应变类型的内部变量进行运动硬化的目的,我们进行了进一步的分解,并将非弹性变形分为两部分,这在微观尺度上具有动机。第一部分可以解释为由位错场引起的局部晶格变形的空间平均(参见Bruhns,OT,Lehmann,T.,Pape。A.,1992。关于低碳钢CK15的瞬态循环硬化行为的描述。 Int。J. Plast。8,331-359)和第二个原因可以归因于微观尺度上的无弹性滑动过程。基于这些思想,可以很容易地指定自由能并以克劳修斯-杜汉不等式的形式满足耗散原理。应力,运动硬化变量和熵的潜在关系以及内部变量的演化规律是熵产生的非负性的充分条件。基于简化的假设,我们发现强化的Armstrong-Frederick模型是一种特殊情况。后来。我们将理论的结构转换为有限的非等温变形。为此,我们应用了Lu和Pister(Lu,SCH,Pister,KD,1975.提出的变形梯度的热机械分解。各向同性热弹性固体的变形分解和自由能函数的表示。)Int。J. Solids Struc (《美国法典》第11卷第927-934页)。正如上面所提示的,我们定义了两个进一步的分解:第一个分解将变形梯度的机械部分分解为弹性部分和非弹性部分,第二个分解非弹性部分为另外两个部分。它的第一部分可以解释为由位错引起的平均弹性晶格变形,第二部分可以解释为由于局部塑性滑动效应而产生的平均塑性应变。为了建立自由能,应力,内部变量和熵的本构关系,我们结合双变量的概念考虑流变模型,并评估了克劳修斯-杜海姆不等式。 (C)2000 Elsevier ScienceLtd。保留所有权利。 [参考:37]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号