...
首页> 外文期刊>International Journal of Plasticity >A strain-rate and temperature dependent constitutive model for BCC metals incorporating non-Schmid effects: Application to tantalum–tungsten alloys
【24h】

A strain-rate and temperature dependent constitutive model for BCC metals incorporating non-Schmid effects: Application to tantalum–tungsten alloys

机译:包含非施密特效应的BCC金属的应变率和温度相关本构模型:在钽钨合金中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, we present a multiscale physically based constitutive law for predicting the mechanical response and texture evolution of body-centered cubic (BCC) metals as a function of strain-rate and temperature. In the model, deformation of individual single crystals results not only from the resolved shear stress along the direction of slip (Schmid law) but also from shear stresses resolved along directions orthogonal to the slip direction as well as the three normal stress components (non-Schmid effects).Weaccount for coupled Schmid and non-Schmid effects through the modification of the resolved shear stress for both 1=2<111>{110} and 1=2<111>{112} slip systems and the modification of the slip resistance for 1=2<111>{112} slip systems. The single crystal model is implemented into a selfconsistent homogenization scheme containing a hardening law for crystallographic slip. The hardening law is based on the evolution of dislocation densities that incorporates strain-rate and temperature effects through the Peierls stress, thermally activated recovery, dislocation substructure formation and dislocation interactions. The polycrystal model is calibrated and validated using a set of mechanical and texture data collected on a tantalum– tungsten alloy, Ta–10W, at temperatures ranging from 298 K to 673 K and strain-rates from 10~(-3) s~(-1) to 2400 s~(-1).We show the model effectively captures the anisotropic hardening rate and texture evolution for all data using a single set of single-crystal hardening parameters. Comparisons between predictions and measured data allow us to discuss the role of slip on {110} and {112} in determining plasticity and texture evolution in Ta–10W.
机译:在这项工作中,我们提出了一种基于物理的多尺度本构定律,用于预测体心立方(BCC)金属的机械响应和织构演变与应变率和温度的关系。在该模型中,单个单晶的变形不仅是由沿滑移方向的解析切应力(施密德定律)引起的,而且还由沿与滑移方向正交的方向解析的切应力以及三个法向应力分量(非正交分量)引起的。 Schmid效应)。通过修改1 = 2 <111> {110}和1 = 2 <111> {112}滑移系统的解析切应力和滑移的修改来解决耦合的Schmid和非Schmid效应1 = 2 <111> {112}滑移系统的电阻。将单晶模型实现为包含结晶滑动的硬化定律的自洽均质方案。硬化定律是基于位错密度的演变,位错密度通过Peierls应力,热活化恢复,位错亚结构形成和位错相互作用综合了应变速率和温度效应。使用在钽-钨合金Ta-10W上在298 K至673 K的温度范围内以及10〜(-3)s〜(应变速率)收集的一组机械和织构数据对多晶模型进行校准和验证。 -1)到2400 s〜(-1)。我们展示了该模型使用一组单晶硬化参数有效地捕获了所有数据的各向异性硬化速率和织构演变。预测值和实测数据之间的比较使我们能够讨论{110}和{112}上的滑移在Ta-10W中确定塑性和织构演变中的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号