首页> 外文期刊>International Journal of Plasticity >A dislocation dynamics based higher-order crystal plasticity model and applications on confined thin-film plasticity
【24h】

A dislocation dynamics based higher-order crystal plasticity model and applications on confined thin-film plasticity

机译:基于位错动力学的高阶晶体可塑性模型及其在有限薄膜可塑性中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

A higher-order crystal plasticity model based on the continuum description of dislocation dynamics is developed to investigate the confined thin-film plasticity at micro-scale. In this model the "back stress" and the "slip resistance" for each slip system are incorporated into a standard diffusion equation for crystal slip, which accounts for the motion of dislocations in a continuum level. Furthermore, a surface energy based interfacial model is introduced here to take account of the interaction between dislocations and the interface. It can provide a more comprehensive study of the interface effect on the confined crystal plastic behavior rather than the two extreme boundary models used in other higher-order crystal plasticity models in which the dislocations can freely or hardly pass through the crystal interface. Then by implementing these models into finite element code the tensions of single-crystal/polycrystal thin Al films with passivation layers are numerically investigated. Two hardening factors associated respectively with the "back stress" and "slip resistance" are qualitatively studied, and it can be concluded from present study that the "back stress" hardening may dominate the strengthening of flow stress in confined thin-film plasticity at sub-micro scale. The interfacial model is applied to successfully model the interactions of dislocation with the film-passivation interfaces.
机译:建立了基于位错动力学连续描述的高阶晶体可塑性模型,以研究微观范围内的受限薄膜可塑性。在该模型中,每个滑移系统的“背应力”和“滑移阻力”被合并到晶体滑移的标准扩散方程中,该方程解释了位错在连续水平上的运动。此外,此处介绍了基于表面能的界面模型,以考虑位错和界面之间的相互作用。它可以提供对界面对受限晶体塑性行为影响的更全面的研究,而不是其他位错可以自由或几乎不通过晶体界面的其他高阶晶体塑性模型中使用的两个极端边界模型。然后,通过将这些模型实现为有限元代码,对具有钝化层的单晶/多晶铝薄膜的张力进行了数值研究。定性研究了分别与“背应力”和“防滑性”相关的两个硬化因素,并且可以从本研究得出结论,“背应力”硬化可能在亚密闭薄膜塑性中主导流动应力的增强。 -微型规模。应用界面模型成功地对位错与薄膜钝化界面的相互作用进行建模。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号