首页> 外文期刊>International Journal of Plasticity >Simulation of polycrystal deformation with grain and grain boundary effects
【24h】

Simulation of polycrystal deformation with grain and grain boundary effects

机译:具有晶界和晶界效应的多晶变形模拟

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Modeling the strengthening effect of grain boundaries (Hall-Petch effect) in metallic polycrystals in a physically consistent way, and without invoking arbitrary length scales, is a long-standing, unsolved problem. A two-scale method to treat predictively the interactions of large numbers of dislocations with grain boundaries has been developed, implemented, and tested. At the first scale, a standard grain-scale simulation (GSS) based on a finite element (FE) formulation makes use of recently proposed dislocation-density-based single-crystal constitutive equations ("SCCE-D") to determine local stresses, strains, and slip magnitudes. At the second scale, a novel meso-scale simulation (MSS) redistributes the mobile part of the dislocation density within grains consistent with the plastic strain, computes the associated inter-dislocation back stress, and enforces local slip transmission criteria at grain boundaries. Compared with a standard crystal plasticity finite element (FE) model (CP-FEM), the two-scale model required only 5% more CPU time, making it suitable for practical material design. The model confers new capabilities as follows: The two-scale method reproduced the dislocation densities predicted by analytical solutions of single pile-ups.Two-scale simulations of 2D and 3D arrays of regular grains predicted Hall-Petch slopes for iron of 1.2 ± 0.3 MN/m3/2 and 1.5 ± 0.3 MN/m3/2, in agreement with a measured slope of 0.9 ± 0.1 MN/m3/2.The tensile stress-strain response of coarse-grained Fe multi-crystals (9-39 grains) was predicted 2-4 times more accurately by the two-scale model as compared with CP-FEM or Taylor-type texture models.The lattice curvature of a deformed Fe-3% Si columnar multi-crystal was predicted and measured. The measured maximum lattice curvature near grain boundaries agreed with model predictions within the experimental scatter.
机译:长期以来,尚未解决的问题是,以物理上一致的方式对金属多晶中的晶界的增强效应(霍尔-Petch效应)进行建模,而无需调用任意的长度尺度。已经开发,实施和测试了一种可预测地处理大量位错与晶界相互作用的两尺度方法。在第一级,基于有限元(FE)公式的标准晶粒度模拟(GSS)利用最近提出的基于位错密度的单晶本构方程(“ SCCE-D”)确定局部应力,应变和滑动幅度。在第二尺度上,一种新颖的介观尺度模拟(MSS)在与塑性应变一致的晶粒内重新分配了位错密度的活动部分,计算了相关的位错间背应力,并在晶粒边界处实施了局部滑移传递准则。与标准的晶体可塑性有限元(FE)模型(CP-FEM)相比,两尺度模型仅需要多5%的CPU时间,使其适合实际的材料设计。该模型具有以下新功能:两步法再现了单堆的解析解所预测的位错密度。规则晶粒的2D和3D阵列的两步模拟预测了铁的Hall-Petch斜率为1.2±0.3 MN / m3 / 2和1.5±0.3 MN / m3 / 2,与测得的斜率0.9±0.1 MN / m3 / 2一致。粗晶粒铁多晶(9-39晶粒)的拉伸应力-应变响应与CP-FEM或泰勒型织构模型相比,双尺度模型可更准确地预测)2-4倍。预测并测量了变形的Fe-3%Si柱状多晶的晶格曲率。在晶界附近测得的最大晶格曲率与实验散射内的模型预测一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号