...
首页> 外文期刊>International journal of modern physics, E. Nuclear physics >THE R-PROCESS: SUPERNOVAE AND OTHER SOURCES OF THE HEAVIEST ELEMENTS
【24h】

THE R-PROCESS: SUPERNOVAE AND OTHER SOURCES OF THE HEAVIEST ELEMENTS

机译:R过程:超新星和其他最重元素的来源

获取原文
获取原文并翻译 | 示例

摘要

Rapid neutron capture in stellar explosions is responsible for the heaviest elements in nature, up to Th, U and beyond. This nucleosynthesis process, the r-process, is unique in the sense that a combination of nuclear physics far from stability (masses, half-lives, neutron-capture and photodisintegration, neutron-induced and beta-delayed fission and last but not least neutrino-nucleus interactions) is intimately linked to ejecta from astrophysical explosions (core collapse supernovae or other neutron star related events). The astrophysics and nuclear physics involved still harbor many uncertainties, either in the extrapolation of nuclear properties far beyond present experimental explorations or in the modeling of multidimensional, general relativistic (neutrino-radiation) hydrodynamics with rotation and possibly required magnetic fields. Observational clues about the working of the r-process are mostly obtained from solar abundances and from the abundance evolution of the heaviest elements as a function of galactic age, as witnessed in old extremely metal-poor stars. They contain information whether the r-process is identical for all stellar events, how abundance features develop with galactic time and whether the frequency of r-process events is comparable to that of average core collapse supernovae - producing oxygen through titanium, as well as iron-group nuclei. The theoretical modeling of the r-process has advanced from simple approaches, where the use of static neutron densities and temperatures can aid to test the influence of nuclear properties far from stability on abundance features, to more realistic expansions with a given entropy, global neutron/proton ratio and expansion timescales, as expected from explosive astrophysical events. The direct modeling in astrophysical events such as supernovae still faces the problem whether the required conditions can be met.
机译:恒星爆炸中的快速中子捕获是自然界中最重的元素的原因,直至Th,U甚至更高。这种核合成过程,即r过程,在某种意义上说是独一无二的,即核物理远非稳定(质量,半衰期,中子俘获和光分解,中子诱发和β延迟裂变以及最后但并非最不重要的中微子)的组合-核相互作用)与天体物理爆炸(核心坍缩超新星或其他中子星相关事件)的射弹紧密相关。涉及的天体物理学和核物理仍然存在许多不确定性,无论是在对核特性的推断远远超出目前的实验探索范围内,还是在对具有旋转和可能需要的磁场的多维,广义相对论(中微子辐射)流体力学进行建模方面。关于r过程工作的观察线索主要来自太阳丰度以及最重元素的富集演化与银河年龄的关系,正如在极贫金属的老恒星中所见。它们包含以下信息:所有恒星事件的r过程是否相同;银河时间的丰度特征如何发展; r过程的频率是否与普通核坍塌超新星的频率相当-通过钛和铁产生氧气群核。 r过程的理论模型已从简单的方法发展而来,在简单的方法中,使用静态中子密度和温度可以帮助测试核性质的影响,而不是稳定性对丰度特征的影响,在给定的熵,全局中子的作用下,可以实现更实际的扩展/质子比和膨胀时间尺度,这是爆炸性天体物理学事件所预期的。在诸如超新星等天体物理事件中的直接建模仍然面临着是否能够满足所需条件的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号