...
首页> 外文期刊>International journal of modern physics, D. Gravitation, astrophysics, cosmology >SEMICLASSICAL (QUANTUM FIELD THEORY) AND QUANTUM (STRING) DE SITTER REGIMES: NEW RESULTS
【24h】

SEMICLASSICAL (QUANTUM FIELD THEORY) AND QUANTUM (STRING) DE SITTER REGIMES: NEW RESULTS

机译:半经典(量子场论)和量子(STRING)德西特系统:新结果

获取原文
获取原文并翻译 | 示例
           

摘要

We compute the quantum string entropy Ss(m, H) from the microscopic string density of states ρs(m, H) of mass m in de Sitter space–time. We find for high m (high Hm → c/α') a new phase transition at the critical string temperature Ts = (1/2πkB)Lcl c2/α', higher than the flat space (Hagedorn) temperature ts (Lcl = c/H, the Hubble constant H acts at the transition, producing a smaller string constant α' and thus, a higher tension). Ts is the precise quantum dual of the semiclassical (QFT Hawking–Gibbons) de Sitter temperature Tsem = - c/(2πkBLcl). By precisely identifying the semiclassical and quantum (string) de Sitter regimes, we find a new formula for the full de Sitter entropy Ssem(H), as a function of the usual Bekenstein–Hawking entropy S_seam~(o)(H). For Lcl e Planck, e.e., for low H c/e Planck, S_seam~(o)(H) is the leading term, but for high H near c/e Planck, a new phadw transition operates and the shole entropy S_seam~(o)(H). We compute the string quantum emission cross-section σstring by a black hole in de Sitter (or asymptotically de Sitter) space–time (bhdS). For Tsem bhdS ? Ts (early evaporation stage), it shows the QFT Hawking emission with temperature Tsem bhdS (semiclassical regime). For Tsem bhdS → Ts, σstring exhibits a phase transition into a string de Sitter state of size Ls = es~2/Lcl, (es = ha/c~2(1/2), and string de Sitter temperature Ts. Instead of featuring a single pole singularity in the temperature (Carlitz transition), it features a square root branch point (de Vega–Sanchez transition). New bounds on the black hole radius rg emerge in the bhdS string regime: it can become rg = Ls/2, or it can reach a more quantum value, rg = 0.365es.
机译:我们根据de Sitter时空中质量m的状态ρs(m,H)的微观串密度来计算量子串熵Ss(m,H)。我们发现,对于高m(高Hm→c /α'),在临界弦温度Ts =(1 /2πkB)Lcl c2 /α'处有一个新的相变,高于平面空间(Hagedorn)温度ts(Lcl = c / H,哈勃常数H作用于过渡处,产生较小的弦常数α',从而产生较高的张力。 Ts是半经典(QFT Hawking–Gibbons)de Sitter温度Tsem =-c /(2πkBLcl)的精确量子对偶。通过精确地识别半经典和量子(字符串)de Sitter体制,我们发现了完整的de Sitter熵Ssem(H)的新公式,它是通常的Bekenstein-Hawking熵S_seam〜(o)(H)的函数。对于Lcl e Planck,ee,对于低H c / e Planck,S_seam〜(o)(H)是主导项,但对于在c / e Planck附近的高H,将运行新的phadw过渡,并且产生臭味。熵S_seam〜(o)(H)我们通过de Sitter(或渐近de Sitter)时空(bhdS)中的黑洞来计算字符串量子发射截面σstring。对于Tsem bhdS? Ts(早期蒸发阶段),它显示了温度为Tsem bhdS(半经典状态)的QFT Hawking发射。对于Tsem bhdS→Ts,σstring表现出相变,转变为大小为Ls = es〜2 / Lcl的串de Sitter状态(es = ha / c〜2(1/2)和串de Sitter温度Ts。它具有温度单极奇点(Carlitz跃迁),具有平方根分支点(de Vega–Sanchez跃迁),黑洞半径rg的新界限出现在bhdS弦谱中:它可以变为rg = Ls / 2,或者它可以达到更大的量子值,rg = 0.365es。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号