首页> 外文期刊>International Journal of Mechanical Sciences >Multi-scale parallel finite element analyses of LDH sheet formability tests based on crystallographic homogenization method
【24h】

Multi-scale parallel finite element analyses of LDH sheet formability tests based on crystallographic homogenization method

机译:基于结晶均质化方法的LDH板材成形性试验的多尺度平行有限元分析

获取原文
获取原文并翻译 | 示例
           

摘要

A multi-scale parallel finite element (FE) procedure based on the crystallographic homogenization method was applied to the LDH sheet formability test analysis. For the multi-scale structure, two scales are considered. One is a microscopic polycrystal structure and the other is a macroscopic elastic plastic continuum. The analysis code can predict the formability of sheet metal in macro-scale, simultaneously the crystal texture and hardening evolutions in the micro-scale (Nakamachi E et al. Int J Plasticity 2007;23:450-8). Since huge computation time is required for the nonlinear dynamic multi-scale FE analysis, parallel computing technique based on domain partitioning of FE model for macro-continuum is introduced into the multi-scale code using the message passing interface (MPI) library and PC cluster (Kuramae H et al. In: Proceedings of the eighth international conference on computational plasticity, Part 1, 2005. p. 622-5). The explicit time stepping solution scheme in the nonlinear multi-scale FE dynamic problem is well-suited for parallel computing on distributed memory environment such as PC cluster because solving simultaneous equation is not required. We measured crystal morphologies of four automotive sheet metals, aluminum alloy sheet metals A6022-T43 and A5182-0, an asymmetrically rolled aluminum alloy sheet metal A6022-ASR, and mild steel HC220YD, by using the scanning electron microscope (SEM) with electron back scattered diffraction (EBSD) analyses, and defined a three-dimensional representative volume element (RVE) of micro polycrystal structure, which satisfy the periodicity condition of crystal orientation distribution. We evaluate not only macroscopic formability of the automotive sheet metals by the multi-scale LDH test analysis, but also microcrystalline texture evolution during plastic deformation. Furthermore, a relationship between the macroscopic formability and the microcrystal texture evolution was discussed through looking at multi-scale FE results. It is concluded that the mild steel HC220YD was the highest formability than the aluminum alloy sheet metals because of remaining and generating the γ-fiber texture, such as {111}<110>-{111}<112> orientations, during plastic deformation.
机译:基于结晶均质化方法的多尺度平行有限元(FE)程序应用于LDH片材可成形性测试分析。对于多尺度结构,考虑两个尺度。一个是微观多晶结构,另一个是宏观弹性塑性连续体。分析代码可以在宏观尺度上预测钣金的可成形性,同时可以在微观尺度上预测晶体的织构和硬化演变(Nakamachi E等人,Int J Plasticity 2007; 23:450-8)。由于非线性动态多尺度有限元分析需要大量的计算时间,因此使用消息传递接口(MPI)库和PC群集将基于宏模型的有限元模型域划分的并行计算技术引入到多尺度代码中(Kuramae H等人在:第八届国际计算机可塑性会议论文集,第1部分,2005年,第622-5页)。非线性多尺度有限元动力学问题中的显式时间步求解方案非常适合在分布式存储环境(例如PC群集)上并行计算,因为不需要求解联立方程。我们使用带电子背板的扫描电子显微镜(SEM)测量了四种汽车钣金,铝合金钣金A6022-T43和A5182-0,不对称轧制铝合金钣金A6022-ASR和低碳钢HC220YD的晶体形态散射衍射(EBSD)分析,定义了一个微多晶结构的三维代表体元素(RVE),满足晶体取向分布的周期性条件。我们不仅通过多尺度LDH测试分析评估了汽车钣金的宏观可成形性,还评估了塑性变形过程中微晶织构的演变。此外,通过观察多尺度有限元分析结果,讨论了宏观可成形性与微晶织构演变之间的关系。结论是,在塑性变形过程中,低碳钢HC220YD的可成形性比铝合金薄板高,这是因为它们保留并产生了诸如{111} <110>-{111} <112>取向之类的γ纤维织构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号