首页> 外文期刊>International Journal of Mechanical Sciences >Hydro-rim deep-drawing processes of hardening and rate-sensitive materials
【24h】

Hydro-rim deep-drawing processes of hardening and rate-sensitive materials

机译:硬化和速率敏感材料的水力边缘深冲工艺

获取原文
获取原文并翻译 | 示例
           

摘要

The conventional deep drawing process is limited to a certain limit drawing ratio (LDR) beyond which rupture will ensue. An asymptotic solution of the complete governing equations of this process indicates that this relatively low LDR results from the steep build-up of radial tensile stress with maximum value at the die lip. This tensile stress is significantly enhanced by interfacial friction along the die/flange and by high speed of the operating load and thus holds responsible for premature ruptures. The intention of this work is to examine the possibilities of relaxing the above limitation, aiming towards a process with an 'unlimited drawing ratio'. The ideas which may lead to this goal are: (a) exerting an external fluid pressure on the outside rim of the blank ("Hydro-rim process") to reduce radial stress and to decrease, in parallel, the interfacial friction, (b) increasing the blank temperature to a level at which the material is more rate sensitive, and thus less prone to early failure. The benefits of these ideas are examined via parametric analysis of the solution and with experiments in deep drawing processes. A clear outcome from the solution is that if changes in the material properties (strain hardening, strain-rate sensitivity, yield stress, etc.) can be controlled, say, by controlling the temperature and/or the operating speed, the process can reach higher drawing ratios with substantially less assisted fluid pressure. (C) 2000 Elsevier Science Ltd. All rights reserved. [References: 11]
机译:常规的深拉工艺仅限于一定的极限拉伸比(LDR),超过此极限会导致破裂。该过程的完整控制方程的渐近解表明,这种相对较低的LDR是由径向拉伸应力的急剧增加导致的,该径向拉伸应力在模唇处具有最大值。沿模头/法兰的界面摩擦以及高速的工作负荷会大大提高该拉伸应力,从而导致过早破裂。这项工作的目的是研究放松上述限制的可能性,旨在实现具有“无限拉伸比”的工艺。可能导致该目标的想法是:(a)在坯料的外缘上施加外部流体压力(“水力边缘工艺”)以减小径向应力并同时减小界面摩擦,(b )将坯料温度提高到材料对速率更敏感的水平,从而减少早期失效的可能性。通过对解决方案进行参数分析以及在深拉伸过程中进行实验,可以检验这些想法的好处。该解决方案的明确结果是,如果可以控制材料性能(应变硬化,应变率敏感性,屈服应力等)的变化,例如,通过控制温度和/或运行速度,则该过程可以达到更高的拉伸比,而辅助流体压力却大大降低。 (C)2000 Elsevier ScienceLtd。保留所有权利。 [参考:11]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号