首页> 外文学位 >Extracting material response from simple mechanical tests on hardening-softening-hardening viscoplastic solids.
【24h】

Extracting material response from simple mechanical tests on hardening-softening-hardening viscoplastic solids.

机译:从简单的机械测试中提取材料对硬化-硬化-硬化的粘塑性固体的响应。

获取原文
获取原文并翻译 | 示例

摘要

Compliant foams are usually characterized by a wide range of desirable mechanical properties. These properties include viscoelasticity at different temperatures, energy absorption, recoverability under cyclic loading, impact resistance, and thermal, electrical, acoustic and radiation-resistance. Some foams contain nano-sized features and are used in small-scale devices. This implies that the characteristic dimensions of foams span multiple length scales, rendering modeling their mechanical properties difficult. Continuum mechanics-based models capture some salient experimental features like the linear elastic regime, followed by non-linear plateau stress regime. However, they lack mesostructural physical details. This makes them incapable of accurately predicting local peaks in stress and strain distributions, which significantly affect the deformation paths. Atomistic methods are capable of capturing the physical origins of deformation at smaller scales, but suffer from impractical computational intensity. Capturing deformation at the so-called meso-scale, which is capable of describing the phenomenon at a continuum level, but with some physical insights, requires developing new theoretical approaches.;A fundamental question that motivates the modeling of foams is `how to extract the intrinsic material response from simple mechanical test data, such as stress vs. strain response?' A 3D model was developed to simulate the mechanical response of foam-type materials. The novelty of this model includes unique features such as the hardening-softening-hardening material response, strain rate-dependence, and plastically compressible solids with plastic non-normality. Suggestive links from atomistic simulations of foams were borrowed to formulate a physically informed hardening material input function. Motivated by a model that qualitatively captured the response of foam-type vertically aligned carbon nanotube (VACNT) pillars under uniaxial compression [2011,"Analysis of Uniaxial Compression of Vertically Aligned Carbon Nanotubes," J. Mech.Phys. Solids, 59, pp. 2227--2237, Erratum 60, 1753-1756 (2012)], the property space exploration was advanced to three types of simple mechanical tests: 1) uniaxial compression, 2) uniaxial tension, and 3) nanoindentation with a conical and a flat-punch tip. The simulations attempt to explain some of the salient features in experimental data, like 1) The initial linear elastic response. 2) One or more nonlinear instabilities, yielding, and hardening.;The model-inherent relationships between the material properties and the overall stress-strain behavior were validated against the available experimental data. The material properties include the gradient in stiffness along the height, plastic and elastic compressibility, and hardening. Each of these tests was evaluated in terms of their efficiency in extracting material properties. The uniaxial simulation results proved to be a combination of structural and material influences. Out of all deformation paths, flat-punch indentation proved to be superior since it is the most sensitive in capturing the material properties.
机译:顺应性泡沫通常以广泛的所需机械性能为特征。这些特性包括在不同温度下的粘弹性,能量吸收,循环载荷下的可恢复性,抗冲击性以及耐热,电,声和辐射抗性。一些泡沫包含纳米尺寸的特征,并用于小型设备。这意味着泡沫的特征尺寸跨越多个长度尺度,使得对其机械性能进行建模变得困难。基于连续力学的模型捕获了一些显着的实验特征,例如线性弹性状态,然后是非线性平稳应力状态。但是,它们缺少介观的物理细节。这使得它们无法准确预测应力和应变分布中的局部峰值,从而显着影响变形路径。原子方法能够以较小的比例捕获变形的物理原点,但存在不切实际的计算强度的问题。在所谓的中观尺度上捕获变形,该变形能够在连续水平上描述该现象,但是具有一些物理见解,因此需要开发新的理论方法。激励泡沫建模的基本问题是“如何提取”。来自简单机械测试数据的固有材料响应,例如应力与应变响应?开发了一个3D模型来模拟泡沫型材料的机械响应。该模型的新颖性包括独特的功能,例如硬化-软化-硬化材料响应,应变率相关性以及具有非正常塑性的可塑性压缩固体。借用了泡沫原子模拟的暗示性链接,以制定一种物理上可知的硬化材料输入函数。受定性捕获泡沫型垂直排列的碳纳米管(VACNT)柱在单轴压缩下的响应的模型的启发[2011,“垂直排列的碳纳米管的单轴压缩分析”,J。Mech.Phys。 Solids,59,pp。2227--2237,Erratum 60,1753-1756(2012)],将属性空间探索推进到三种简单的机械测试类型:1)单轴压缩,2)单轴拉伸和3)纳米压痕带有锥形和扁平冲头。模拟试图解释实验数据中的一些显着特征,例如1)初始线性弹性响应。 2)一种或多种非线性不稳定性,屈服和硬化。;根据现有的实验数据验证了材料特性与整体应力应变行为之间的模型固有关系。材料特性包括沿高度的刚度梯度,塑性和弹性可压缩性以及硬化。这些测试中的每一个都根据其提取材料特性的效率进行了评估。单轴模拟结果证明是结构和材料影响的组合。在所有变形路径中,平冲压痕被证明是优越的,因为它在捕获材料特性方面最敏感。

著录项

  • 作者

    Mohan, Nisha.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Applied Mechanics.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 136 p.
  • 总页数 136
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号