首页> 外文期刊>International Journal of Astrobiology >Stellar scattering and the formation of hot Jupiters in binary systems
【24h】

Stellar scattering and the formation of hot Jupiters in binary systems

机译:双星系统中的恒星散射和热木星的形成

获取原文
获取原文并翻译 | 示例
           

摘要

Hot Jupiters (HJs) are usually defined as giant Jovian-size planets with orbital periods P10 days. Although they lie close to the star, several have finite eccentricities and significant misalignment angle with respect to the stellar equator, leading to similar to 20% of HJs in retrograde orbits. More than half, however, seem consistent with near-circular and planar orbits. In recent years, two mechanisms have been proposed to explain the excited and misaligned subpopulation of HJs: Lidov-Kozai migration and planet-planet scattering. Although both are based on completely different dynamical phenomena, at first hand they appear to be equally effective in generating hot planets. Nevertheless, there has been no detailed analysis comparing the predictions of both mechanisms, especially with respect to the final distribution of orbital characteristics. In this paper, we present a series of numerical simulations of Lidov-Kozai trapping of single planets in compact binary systems that suffered a close fly-by of a background star. Both the planet and the binary component are initially placed in coplanar orbits, although the inclination of the impactor is assumed random. After the passage of the third star, we follow the orbital and spin evolution of the planet using analytical models based on the octupole expansion of the secular Hamiltonian. We also include tidal effects, stellar oblateness and post-Newtonian perturbations. The present work aims at the comparison of the two mechanisms (Lidov-Kozai and planet-planet scattering) as an explanation for the excited and inclined HJs in binary systems. We compare the results obtained through this paper with results in Beauge & Nesvorny (2012), where the authors analyse how the planet-planet scattering mechanisms works in order to form this hot Jovian-size planets. We find that several of the orbital characteristics of the simulated HJs are caused by tidal trapping from quasi-parabolic orbits, independent of the driving mechanism (planet-planet scattering or Lidov-Kozai migration). These include both the 3-day pile-up and the distribution in the eccentricity versus semimajor axis plane. However, the distribution of the inclinations shows significant differences. While Lidov-Kozai trapping favours a more random distribution (or even a preference for near polar orbits), planet-planet scattering shows a large portion of bodies nearly aligned with the equator of the central star. This is more consistent with the distribution of known hot planets, perhaps indicating that scattering may be a more efficient mechanism for producing these bodies.
机译:热木星(HJs)通常被定义为巨木星大小的行星,其轨道周期为P10天。尽管它们靠近恒星,但其中一些相对于恒星赤道具有有限的偏心率和明显的偏心角,导致逆行轨道上的HJ接近20%。然而,似乎有一半以上与近圆形和平面轨道一致。近年来,已经提出了两种机制来解释HJ的激发和未对准亚群:Lidov-Kozai迁移和行星-行星散射。尽管两者都基于完全不同的动力学现象,但乍看之下,它们似乎在产生热行星方面同样有效。然而,还没有详细的分析比较这两种机制的预测,特别是在轨道特征的最终分布方面。在本文中,我们提出了一系列紧凑的双星系统中单个行星的Lidov-Kozai诱捕的一系列数值模拟,这些双星系统遭受背景恒星的近距离掠过。尽管假定撞击器的倾角是随机的,但行星和二元分量最初都位于共面轨道上。第三颗恒星通过后,我们使用基于世俗哈密顿量的八极膨胀的分析模型来跟踪行星的轨道和自旋演化。我们还包括潮汐影响,恒星扁率和牛顿后扰动。本工作旨在比较两种机制(Lidov-Kozai和行星行星散射),以解释二元系统中激发和倾斜的HJ。我们将本文获得的结果与Beauge&Nesvorny(2012)的结果进行了比较,作者在其中分析了行星-行星散射机制是如何工作的,以形成热的木星大小的行星。我们发现,模拟的HJ的一些轨道特征是由准抛物线轨道的潮汐捕获引起的,与驱动机制(行星-行星散射或Lidov-Kozai迁移)无关。这些包括三天的堆积以及偏心与半长轴平面的分布。但是,倾斜度的分布显示出显着差异。 Lidov-Kozai陷印倾向于更随机的分布(甚至偏向近极轨道),而行星-行星散射显示出大部分物体与中心恒星的赤道几乎对准。这与已知热行星的分布更加一致,也许表明散射可能是生产这些天体的更有效机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号