首页> 外文期刊>International Journal of Astrobiology >Nanophase iron oxides as a key ultraviolet sunscreen for ancient photosynthetic microbes
【24h】

Nanophase iron oxides as a key ultraviolet sunscreen for ancient photosynthetic microbes

机译:纳米相氧化铁作为古代光合微生物的关键紫外线防晒剂

获取原文
获取原文并翻译 | 示例
           

摘要

We propose that nanophase iron-oxide-bearing materials provided important niches for ancient photosynthetic microbes on the Earth that ultimately led to the oxygenation of the Earth's atmosphere and the formation of iron-oxide deposits. Atmospheric oxygen and ozone attenuate ultraviolet radiation on the Earth today providing substantial protection for photosynthetic organisms. With ultraviolet radiation fluxes likely to have been even higher on the early Earth than today, accessing solar radiation was particularly risky for early organisms. Yet, we know that photosynthesis arose early and played a critical role in subsequent evolution. Of primary importance was protection below 290 nm, where peak nucleic acid (~260 nm) and protein (~280 nm) absorptions occur. Nanophase ferric oxide/oxyhydroxide minerals absorb, and thus block, the lethal ultraviolet radiation, while transmitting light through much of the visible and near-infrared regions of interest to photosynthesis (400 to 1100 nm). Furthermore, they were available in early environments, and are synthesized by many organisms. Based on experiments using nanophase ferric oxide/oxyhydroxide minerals as a sunscreen for photosynthetic microbes, we suggest that iron, an abundant element widely used in biological mechanisms, may have provided the protection that early organisms needed in order to be able to use photosynthetically active radiation while being protected from ultraviolet-induced damage. The results of this study are broadly applicable to astrobiology because of the abundance of iron in other potentially habitable bodies and the evolutionary pressure to utilize solar radiation when available as an energy source. This model could apply to a potential life form on Mars or other bodies where liquid water and ultraviolet radiation could have been present at significant levels. Based on ferric oxide/oxyhydroxide spectral properties, likely geologic processes, and the results of experiments with the photosynthetic organisms, Euglena sp. and Chlamydomonas reinhardtii, we propose a scenario where photosynthesis, and ultimately the oxygenation of the atmosphere, depended on the protection of early microbes by nanophase ferric oxides/oxyhydroxides.
机译:我们提出,纳米相的氧化铁质材料为地球上古老的光合微生物提供了重要的生态位,最终导致地球大气的氧合和氧化铁沉积物的形成。如今,大气中的氧气和臭氧会减弱地球上的紫外线辐射,从而为光合生物提供了重要的保护。由于地球早期的紫外线辐射通量甚至可能比今天还要高,因此接触太阳辐射对早期生物特别危险。但是,我们知道光合作用出现得很早,并且在随后的进化中起着关键作用。最重要的是在290 nm以下进行保护,此时会出现峰值核酸(〜260 nm)和蛋白质(〜280 nm)吸收峰。纳米相的三氧化二铁/羟基氧化铁矿物质吸收并阻止致命的紫外线辐射,同时将光通过感兴趣的许多可见和近红外区域传输至光合作用(400至1100 nm)。此外,它们可在早期环境中使用,并且是许多生物体合成的。基于使用纳米相三氧化二铁/羟基氧化铁矿物质作为光合微生物防晒剂的实验,我们认为铁是一种广泛用于生物学机制的丰富元素,它可能提供了早期生物体所需的保护,以便能够利用光合活性辐射同时免受紫外线造成的损害。这项研究的结果广泛适用于天文生物学,因为其他潜在可居住物体中铁的含量很高,并且在有可用能量来源时利用太阳辐射的进化压力也很大。该模型可以应用于火星或其他可能存在大量液态水和紫外线的物体上的潜在生命形式。基于三氧化二铁/羟基氧化铁的光谱特性,可能的地质过程以及光合生物Euglena sp。的实验结果。和莱茵衣藻(Chlamydomonas reinhardtii),我们提出了一种场景,其中光合作用以及最终大气的氧合作用取决于纳米相三氧化二铁/羟基氧化铁对早期微生物的保护。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号