【24h】

Age aspects of habitability

机译:可居住性的年龄方面

获取原文
获取原文并翻译 | 示例
       

摘要

A 'habitable zone' of a star is defined as a range of orbits within which a rocky planet can support liquid water on its surface. The most intriguing question driving the search for habitable planets is whether they host life. But is the age of the planet important for its habitability? If we define habitability as the ability of a planet to beget life, then probably it is not. After all, life on Earth has developed within only similar to 800 Myr after its formation - the carbon isotope change detected in the oldest rocks indicates the existence of already active life at least 3.8 Gyr ago. If, however, we define habitability as our ability to detect life on the surface of exoplanets, then age becomes a crucial parameter. Only after life had evolved sufficiently complex to change its environment on a planetary scale, can we detect it remotely through its imprint on the atmosphere - the so-called biosignatures, out of which the photosynthetic oxygen is the most prominent indicator of developed (complex) life as we know it. Thus, photosynthesis is a powerful biogenic engine that is known to have changed our planet's global atmospheric properties. The importance of planetary age for the detectability of life as we know it follows from the fact that this primary process, photosynthesis, is endothermic with an activation energy higher than temperatures in habitable zones, and is sensitive to the particular thermal conditions of the planet. Therefore, the onset of photosynthesis on planets in habitable zones may take much longer time than the planetary age. The knowledge of the age of a planet is necessary for developing a strategy to search for exoplanets carrying complex (developed) life - many confirmed potentially habitable planets are too young (orbiting Population I stars) and may not have had enough time to develop and/or sustain detectable life. In the last decade, many planets orbiting old (9-13 Gyr) metal-poor Population II stars have been discovered. Such planets had had enough time to develop necessary chains of chemical reactions and may carry detectable life if located in a habitable zone. These old planets should be primary targets in search for the extraterrestrial life.
机译:恒星的“可居住区域”定义为岩石行星可以在其表面上支撑液态水的一系列轨道。促使人们寻找宜居行星的最有趣的问题是它们是否拥有生命。但是,行星的年龄对它的宜居性重要吗?如果我们将宜居性定义为行星生出生命的能力,那么可能就不是。毕竟,地球生命在形成后仅在约800 Myr内发展了-在最古老的岩石中发现的碳同位素变化表明,至少在3.8 Gyr之前已经存在活跃的生命。但是,如果将可居住性定义为检测系外行星表面生命的能力,那么年龄就成为一个关键参数。只有在生命进化到足以在行星尺度上改变其环境的复杂性之后,我们才能通过其在大气中的烙印(即所谓的生物特征)来远程检测到它,其中光合作用的氧是其中最显着的指标(复杂的)我们所知道的生活。因此,光合作用是一种强大的生物引擎,众所周知,它改变了我们星球的全球大气特性。我们知道,行星年龄对生命可探测性的重要性来自以下事实:光合作用是这一主要过程的吸热作用,其活化能高于可居住区域的温度,并且对行星的特殊热状况敏感。因此,在宜居区域的行星上开始光合作用的时间可能比行星年龄要长得多。了解行星的年龄对于制定策略来寻找具有复杂(发达)生命的系外行星是必不可少的-许多已确认的潜在宜居行星还太年轻(绕着I类恒星运行),可能没有足够的时间来发展和/或维持可察觉的生命。在过去的十年中,发现了许多行星,这些行星围绕着贫金属(II-13)年代久远的旧II型恒星运行。这样的行星有足够的时间发展必要的化学反应链,如果位于宜居区域,则可能具有可探测的生命。这些古老的行星应该是寻找外星生命的主要目标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号