...
【24h】

Robustness of deep-drawing finite-element simulations to process variations

机译:深冲有限元仿真对工艺变化的鲁棒性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Robustness of numerical models paves the way for efficient compensation of perturbations resulting in deviations from the nominal conditions. This is critical if the numerical simulations will be used to determine closed-loop process control adjustments to assure the final part quality. This work details the procedure to establish and validate numerical process models, through an investigation of deep-drawing of AA1100-O blanks using 3D Servo Press. Of particular interest is the robustness of the deep-drawing simulation models to different process variations and off-design conditions. The experiments are performed on a 3D Servo Press, used as a conventional press, and equipped with a spring-loaded blank holder. From the experiments, the punch force-displacement as well as local features, i.e., flange draw-in and wall-thinning, are obtained. Two types of finite element models of the drawing process are created, one using shell and the other using solid elements. Correspondingly, the plastic anisotropy of the blanks is modeled using the Yld2000-2d (2D) and Yld2004-18p (3D) yield functions. The friction coefficient between the blank and tooling is inversely identified by comparing the simulated punch force-displacement response, flange draw-in and thickness variations with the experimental ones. The robustness of the numerical and material models is confirmed by process variations on the geometry of the blanks, i.e., an initial offset of blank center and elliptical blanks. However, the wrinkling of the flange due to variation of the blank holder force is not captured by the model. A modification to the model, i.e., by introducing appropriate geometric imperfections to the blank, enables it to predict the flange wrinkling. This work investigates the robustness of numerical models to different types of process variations, which is vital in model-based control analyses.
机译:数值模型的鲁棒性为有效补偿导致偏离标称条件的扰动铺平了道路。如果数值模拟将用于确定闭环过程控制调整以确保最终零件质量,这一点至关重要。这项工作详细介绍了通过使用 3D 伺服压力机对 AA1100-O 坯料进行深冲研究来建立和验证数值过程模型的过程。特别令人感兴趣的是深冲仿真模型对不同工艺变化和非设计条件的鲁棒性。实验在3D伺服压力机上进行,用作传统压力机,并配备弹簧加载的毛坯夹具。通过实验,得到了冲头力-位移以及局部特征,即法兰拉入和壁薄。创建两种类型的绘图过程有限元模型,一种使用壳,另一种使用实体单元。相应地,使用 Yld2000-2d (2D) 和 Yld2004-18p (3D) 屈服函数对坯料的塑性各向异性进行建模。通过与实验结果比较模拟的冲头力-位移响应、法兰拉伸和厚度变化,反向识别毛坯与工装之间的摩擦系数。数值模型和材料模型的鲁棒性通过毛坯几何形状的工艺变化得到证实,即毛坯中心和椭圆毛坯的初始偏移。但是,由于坯料夹持力的变化而导致的法兰起皱不会被模型捕获。对模型进行修改,即通过在坯料中引入适当的几何缺陷,使其能够预测法兰起皱。这项工作研究了数值模型对不同类型过程变化的鲁棒性,这在基于模型的控制分析中至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号