...
首页> 外文期刊>International Journal of Fracture >A mesh-independent finite element formulation for modeling crack growth in saturated porous media based on an enriched-FEM technique
【24h】

A mesh-independent finite element formulation for modeling crack growth in saturated porous media based on an enriched-FEM technique

机译:基于富有限元技术的饱和多孔介质中裂纹扩展建模的独立于网格的有限元公式

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this paper, the crack growth simulation is presented in saturated porous media using the extended finite element method. The mass balance equation of fluid phase and the momentum balance of bulk and fluid phases are employed to obtain the fully coupled set of equations in the framework of u-p formulation. The fluid flow within the fracture is modeled using the Darcy law, in which the fracture permeability is assumed according to the well-known cubic law. The spatial discritization is performed using the extended finite element method, the time domain discritization is performed based on the generalized Newmark scheme, and the non-linear system of equations is solved using the Newton-Raphson iterative procedure. In the context of the X-FEM, the discontinuity in the displacement field is modeled by enhancing the standard piece-wise polynomial basis with the Heaviside and crack-tip asymptotic functions, and the discontinuity in the fluid flow normal to the fracture is modeled by enhancing the pressure approximation field with the modified level-set function, which is commonly used for weak discontinuities. Two alternative computational algorithms are employed to compute the interfacial forces due to fluid pressure exerted on the fracture faces based on a 'partitioned solution algorithm' and a 'time-dependent constant pressure algorithm' that are mostly applicable to impermeable media, and the results are compared with the coupling X-FEM model. Finally, several benchmark problems are solved numerically to illustrate the performance of the X-FEM method for hydraulic fracture propagation in saturated porous media.
机译:本文采用扩展有限元方法对饱和多孔介质中的裂纹扩展进行了模拟。在u-p公式的框架内,采用了流体相的质量平衡方程式以及本体和流体相的动量平衡方程来获得完全耦合的方程组。使用达西定律对裂缝内的流体流动进行建模,其中根据众所周知的三次定律假设裂缝渗透率。使用扩展有限元方法执行空间离散化,基于广义Newmark方案执行时域离散化,并使用Newton-Raphson迭代程序求解非线性方程组。在X-FEM的背景下,通过使用Heaviside和裂纹尖端渐近函数增强标准的分段多项式基础,对位移场中的不连续性进行建模,并通过以下方式对垂直于裂缝的流体流动进行不连续性建模:使用修改后的水平集功能增强压力逼近场,该功能通常用于弱不连续点。基于主要适用于不可渗透介质的“分区求解算法”和“随时间变化的恒压算法”,采用两种替代的计算算法来计算由于流体压力作用在裂缝面上而产生的界面力。与耦合X-FEM模型相比。最后,数值解决了几个基准问题,以说明X-FEM方法在饱和多孔介质中水力压裂扩展的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号