首页> 外文期刊>International Journal of Fracture >Modelling of nucleation and void growth in dynamic pressure loading, application to spall test on tantalum
【24h】

Modelling of nucleation and void growth in dynamic pressure loading, application to spall test on tantalum

机译:动态压力载荷下成核和空洞生长的建模,在钽剥落试验中的应用

获取原文
获取原文并翻译 | 示例
       

摘要

Dynamic ductile fracture is a three stages process controlled by nucleation, growth and finally coalescence of voids. In the present work, a theoretical model, dedicated to nucleation and growth of voids during dynamic pressure loading, is developed. Initially, the material is free of voids but has potential sites for nucleation. A void nucleates from an existing site when the cavitation pressure rho_c is reached. A Weibull probability law is used to describe the distribution of the cavitation pressure among potential nucleation sites. During the initial growth, the effect of material properties is essentially appearing through the magnitude of rho_c. In the later stages, the matrix softening due to the increase of porosity has to be taken into account. In a first step, the response of a sphere made of dense matrix but containing a unique potential site, is investigated. When the applied loading is a pressure ramp, a closed form solution is derived for the evolution of the void that has nucleated from the existing site. The solution appears to be valid up to a porosity of 0.5. In a second part, the dynamic ductile fracture of a high-purity grade tantalum is simulated using the proposed model. Spall stresses for this tantalum are calculated and are in close agreement with experimental levels measured by Roy (2003, Ph.D. Thesis, Ecole Natio-nale Superieure de Mecanique et d'Aeronautique, Universite de Poitiers, France). Finally, a parametric study is performed to capture the influence of different parameters (mass density of the material, mean spacing between neighboring sites, distribution of nucleation sites...) on the evolution of damage.
机译:动态延性断裂是一个由成核,生长和最终聚结控制的三个阶段的过程。在目前的工作中,建立了一个理论模型,致力于动态压力加载过程中空隙的形核和生长。最初,该材料没有空隙,但具有潜在的成核位置。当达到空化压力rho_c时,空隙会从现有位置成核。威布尔概率定律用于描述空化压力在潜在成核位置之间的分布。在初始生长期间,材料特性的影响基本上通过rho_c的大小出现。在后面的阶段中,必须考虑由于孔隙率增加而引起的基质软化。第一步,研究由致密基质制成但包含唯一潜在位点的球体的响应。当施加的载荷为压力斜坡时,将得出封闭形式的解,以解决从现有位置成核的空隙的演化。该溶液在孔隙率为0.5时似乎是有效的。在第二部分中,使用提出的模型模拟了高纯度品位钽的动态延性断裂。计算出该钽的剥落应力,并与Roy(2003年,博士学位论文,法国普瓦捷大学的法国国立高等机械学校)的实验水平非常吻合。最后,进行参数研究以捕获不同参数(材料的质量密度,相邻位点之间的平均间距,成核位点的分布等)对损伤演变的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号