首页> 外文期刊>Journal of the Mechanics and Physics of Solids >A physical model for nucleation and early growth of voids in ductile materials under dynamic loading
【24h】

A physical model for nucleation and early growth of voids in ductile materials under dynamic loading

机译:动态载荷下延性材料中空核成核和早期生长的物理模型

获取原文
获取原文并翻译 | 示例
       

摘要

Spall fracture and other rapid tensile failures in ductile materials are often dominated by the rapid growth of voids. Recent research on the mechanics of void growth clearly shows that void nucleation may be represented as a bifurcation phenomenon, wherein a void forms spontaneously followed by highly localized plastic flow around the new void. Although thermal, viscoplastic, and work hardening effects all play an essential role in the earliest stages of nucleation and growth, the flow becomes dominated by spherical radial inertia, which soon causes all voids to grow asymptotically at the same rate, regardless of differences in initial conditions or constitutive details, provided only that there is the same density of matrix material and the same excess loading history beyond the cavitation stress. These two facts, initiation by bifurcation at a cavitation stress, at which a void first appears, and rapid domination by inertia, are used to postulate a simple, but physically realistic, model for nucleation and early growth of voids in a ductile material under rapid tensile loading. A reasonable statistical distribution for the cavitation stress at various nucleation sites and a simple similarity solution for inertially dominated void growth permit a simple calculation of the initiation and early growth of porosity in the material. Parametric analyses are presented to show the effect that loading rate, peak loading stress, density of nucleation sites, physical properties of the material, etc. have on the applied pressure and distribution of void sizes when a critical porosity is reached.
机译:延性材料中的散裂断裂和其他快速拉伸破坏通常由空隙的快速增长所主导。空隙生长机理的最新研究清楚地表明,空隙成核现象可以表示为分叉现象,其中空隙自发形成,随后在新空隙周围发生高度局部的塑性流动。尽管热,粘塑性和加工硬化效应在成核和生长的最早阶段都起着至关重要的作用,但流动却受到球形径向惯性的支配,这很快导致所有空隙以相同的速率渐近增长,而不管初始的差异如何。条件或本构细节,前提是除了空化应力外,存在相同的基体材料密度和相同的超负荷历史。这两个事实是在气蚀应力下由分叉开始,首先出现空隙,而在惯性下则迅速占主导地位,这两个事实为延性和易延性材料中空隙的成核和早期生长提供了一个简单但物理上现实的模型。拉伸载荷。合理的统计分布在各个成核位置的空化应力,以及惯性控制的空洞生长的简单相似性解决方案,可以轻松计算材料中孔隙的萌生和早期生长。进行了参数分析,以显示当达到临界孔隙率时,加载速率,峰值加载应力,成核位点密度,材料的物理性质等对施加的压力和空隙尺寸分布的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号