...
首页> 外文期刊>International Journal of Condensed Matter, Advanced Materials and Superconductivity Research >EXPLORATION OF ELECTROLYTES FOR ZN-ANODE RECHARGEABLE BATTERIES: ROOM TEMPERATURE IONIC LIQUIDS AS MAJOR OR SUPPORTING COMPONENTS
【24h】

EXPLORATION OF ELECTROLYTES FOR ZN-ANODE RECHARGEABLE BATTERIES: ROOM TEMPERATURE IONIC LIQUIDS AS MAJOR OR SUPPORTING COMPONENTS

机译:用于ZN阳极可充电电池的电解液的研究:作为主要成分或支持成分的室温离子液体

获取原文
获取原文并翻译 | 示例

摘要

For Zn-anode rechargeable batteries, there are a number of shortcomings associated with using traditional KOH aqueous electrolytes. These include drying-out of the electrolyte due to water evaporation and dendrite formation at the anode, which severely impair battery performance (e.g., cycle life and capacity) and limit their application. It is, therefore, critical to either modify conventional KOH aqueous electrolytes or explore alternative electrolytes to eliminate these bottlenecks to the development of a feasible Zn-anode rechargeable battery system. Room temperature ionic liquids (RTILs) in recent years have been increasingly recognized as potential electrolytes or electrolyte components for rechargeable batteries. Compared with alkaline electrolytes, a simple electrolyte system composed of an RTIL as the sole component faces the challenge of improving its low conductivity before it can be practically applied in a battery. In this chapter, water and/or dimethyl sulfoxide modified RTILs (composed of pyrrolidinium or imidazolium cations and bis(trifluoromethanesulfonyl)imide or dicyanamide anions), with improved conductivity and Zn redox kinetics, are investigated as potential electrolyte systems for Zn-anode rechargeable batteries. In addition, with the capability of modifying metal deposit morphology, RTILs are found to be beneficial for depressing Zn dendrite formation in KOH aqueous electrolytes. An electrolyte, composed of 9M KOH + 5 wt% ZnO with a hydrophilic RTIL (0.5 wt% 1-ethyl-3-methylimidazolium dicyanamide), appears to be a promising electrolyte system for Zn-anode rechargeable batteries.
机译:对于锌阳极可充电电池,与使用传统的KOH水性电解质有关的许多缺点。这些包括由于水蒸发和在阳极处形成树枝状结晶而使电解质变干,这严重损害了电池的性能(例如,循环寿命和容量)并限制了它们的应用。因此,至关重要的是要么改变常规的KOH水性电解质,要么探索替代电解质以消除这些瓶颈,从而开发出可行的Zn阳极可充电电池系统。近年来,室温离子液体(RTIL)被越来越多地视为潜在的电解质或可充电电池的电解质成分。与碱性电解质相比,以RTIL为唯一成分的简单电解质体系面临着提高其低电导率的挑战,然后才能将其实际应用于电池中。在本章中,研究了水和/或二甲基亚砜改性的RTIL(由吡咯烷鎓或咪唑鎓阳离子以及双(三氟甲磺酰基)酰亚胺或双氰胺阴离子组成),具有改进的电导率和Zn氧化还原动力学,作为Zn阳极可充电电池的潜在电解质系统。另外,由于具有改变金属沉积物形态的能力,发现RTIL有利于抑制KOH水性电解质中Zn枝晶的形成。由9M KOH + 5 wt%的ZnO和亲水性RTIL(0.5 wt%的1-乙基-3-甲基咪唑鎓二氰胺)组成的电解质似乎是用于锌阳极可充电电池的有前途的电解质体系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号