首页> 外文期刊>International journal of applied earth observation and geoinformation >Multi-and hyperspectral geologic remote sensing: A review
【24h】

Multi-and hyperspectral geologic remote sensing: A review

机译:多光谱和高光谱地质遥感:回顾

获取原文
获取原文并翻译 | 示例
           

摘要

Geologists have used remote sensing data since the advent of the technology for regional mapping, structural interpretation and to aid in prospecting for ores and hydrocarbons. This paper provides a review of multispectral and hyperspectral remote sensing data, products and applications in geology. During the early days of Landsat Multispectral scanner and Thematic Mapper, geologists developed band ratio techniques and selective principal component analysis to produce iron oxide and hydroxyl images that could be related to hydrothermal alteration. The advent of the Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) with six channels in the shortwave infrared and five channels in the thermal region allowed to produce qualitative surface mineral maps of clay minerals (kaolinite, illite), sulfate minerals (alunite), carbonate minerals (calcite, dolomite), iron oxides (hematite, goethite), and silica (quartz) which allowed to map alteration facies (propylitic, argillic etc.). The step toward quantitative and validated (subpixel) surface mineralogic mapping was made with the advent of high spectral resolution hyperspectral remote sensing. This led to a wealth of techniques to match image pixel spectra to library and field spectra and to unravel mixed pixel spectra to pure endmember spectra to derive subpixel surface compositional information. These products have found their way to the mining industry and are to a lesser extent taken up by the oil and gas sector. The main threat for geologic remote sensing lies in the lack of (satellite) data continuity. There is however a unique opportunity to develop standardized protocols leading to validated and reproducible products from satellite remote sensing for the geology community. By focusing on geologic mapping products such as mineral and lithologic maps, geochemistry, P-T paths, fluid pathways etc. the geologic remote sensing community can bridge the gap with the geosciences community. Increasingly workflows should be multidisciplinary and remote sensing data should be integrated with field observations and subsurface geophysical data to monitor and understand geologic processes.
机译:自从该技术问世以来,地质学家就一直在使用遥感数据进行区域地图绘制,结构解释以及帮助勘探矿石和碳氢化合物。本文概述了多光谱和高光谱遥感数据,产品及其在地质中的应用。在Landsat Multispectral扫描仪和Thematic Mapper的早期,地质学家开发了谱带比技术和选择性主成分分析方法,以生成可能与水热蚀变有关的氧化铁和羟基图像。先进的星载热发射和反射辐射计(ASTER)的出现使短波红外具有6个通道,而在热区具有5个通道,从而可以生成粘土矿物(高岭石,伊利石),硫酸盐矿物(铝矾土),碳酸盐矿物(方解石,白云石),氧化铁(赤铁矿,针铁矿)和二氧化硅(石英),它们可以绘制蚀变相(丙炔,泥质等)。随着高光谱分辨率高光谱遥感技术的出现,迈向定量和经过验证的(亚像素)表面矿物学制图的步骤。这导致了很多技术,可将图像像素光谱与库和场光谱进行匹配,并将混合像素光谱解散为纯端成员光谱,以得出亚像素表面成分信息。这些产品已进入采矿业,并在较小程度上被石油和天然气行业所采用。地质遥感的主要威胁在于缺乏(卫星)数据连续性。但是,有一个独特的机会来开发标准化协议,从而从卫星遥感中为地质界开发经过验证和可复制的产品。通过专注于地质地图产品,例如矿物和岩性地图,地球化学,P-T路径,流体路径等,地质遥感界可以弥合与地球科学界的鸿沟。越来越多的工作流应该是多学科的,遥感数据应与野外观测和地下地球物理数据相结合,以监测和理解地质过程。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号