首页> 外文期刊>IEEE Transactions on Power Systems: A Publication of the Power Engineering Society >A Modified TLS-ESPRIT-Based Method for Low-Frequency Mode Identification in Power Systems Utilizing Synchrophasor Measurements
【24h】

A Modified TLS-ESPRIT-Based Method for Low-Frequency Mode Identification in Power Systems Utilizing Synchrophasor Measurements

机译:一种基于TLS-ESPRIT的改进方法,用于利用同步相量测量的电力系统中的低频模式识别方法

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a method for online identification of modes corresponding to low-frequency oscillations in a power system. The proposed method has considered the effect of colored Gaussian noise produced due to filters used for signal preprocessing. In order to mitigate the effect of colored Gaussian noise, the paper first proposes a modified total least square estimation of signal parameters via rotational invariance techniques (TLS-ESPRIT) that utilizes first and second rotational shift invariance properties of the signal. In the next step, the modified TLS-ESPRIT utilizes the signal transformed in an orthogonal basis. The proposed method has been compared with the improved Prony, the TLS-ESPRIT and the fourth-order cumulant-based TLS-ESPRIT (4CB-TLS-ESPRIT) using a test signal for identification of the modes at different noise levels. Robustness of the proposed method is established in the presence of colored Gaussian noise through Monte Carlo simulations. Estimation of modes for a two-area power system, using the proposed method, is carried out in the present work. Comparison of the proposed method with other methods is also performed on real-time probing test data obtained from the Western Electricity Coordinating Council (WECC) network.
机译:该文提出了一种在线识别电力系统中低频振荡模式的方法。所提出的方法考虑了由于用于信号预处理的滤波器而产生的彩色高斯噪声的影响。为了减轻有色高斯噪声的影响,本文首先提出了一种利用信号的第一和第二旋转位移不变性特性的旋转不变性技术(TLS-ESPRIT)对信号参数进行修正的全最小二乘估计。在下一步中,修改后的TLS-ESPRIT利用正交基转换的信号。将所提方法与改进的Prony、TLS-ESPRIT和基于四阶累积量的TLS-ESPRIT(4CB-TLS-ESPRIT)进行了比较,使用测试信号识别了不同噪声水平下的模式。通过蒙特卡罗模拟,在存在彩色高斯噪声的情况下建立了所提方法的鲁棒性。本文采用所提出的方法对两区电力系统的模态进行了估计。此外,还利用从西部电力协调委员会(WECC)网络获得的实时探测测试数据,将所提出的方法与其他方法进行了比较。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号