首页> 外文期刊>Langmuir: The ACS Journal of Surfaces and Colloids >Dual magnetic-/temperature-responsive nanoparticles for microfluidic separations and assays
【24h】

Dual magnetic-/temperature-responsive nanoparticles for microfluidic separations and assays

机译:用于微流体分离和检测的磁性/温度响应性双纳米颗粒

获取原文
获取原文并翻译 | 示例

摘要

A stimuli-responsive magnetic nanoparticle system for diagnostic target capture and concentration has been developed for microfluidic lab card settings. Telechelic poly(N-isopropylacrylamide) (PNIPAAm) polymer chains were synthesized with dodecyl tails at one end and a reactive carboxylate at the opposite end by the reversible addition fragmentation transfer technique. These PNIPAAm chains self-associate into nanoscale micelles that were used as dimensional confinements to synthesize the magnetic nanoparticles. The resulting superparamagnetic nanoparticles exhibit a gamma-Fe2O3 core (similar to 5 nm) with a layer of carboxylate-terminated PNIPAAm chains as a corona on the surface. The carboxylate group was used to functionalize the magnetic nanoparticles with biotin and subsequently with streptavidin. The functionalized magnetic nanoparticles can be reversibly aggregated in solution as the temperature is cycled through the PNIPAAm lower critical solution temperature (LCST). While the magnetophoretic mobility of the individual nanoparticles below the LCST is negligible, the aggregates formed above the LCST are large enough to respond to an applied magnetic field. The magnetic nanoparticles can associate with biotinylated targets as individual particles, and then subsequent application of a combined temperature increase and magnetic field can be used to magnetically separate the aggregated particles onto the poly(ethylene glycol)-modified polydimethylsiloxane channel walls of a microfluidic device. When the magnetic field is turned off and the temperature is reversed, the captured aggregates redisperse into the channel flow stream for further downstream processing. The dual magnetic- and temperature-responsive nanoparticles can thus be used as soluble reagents to capture diagnostic targets at a controlled time point and channel position. They can then be isolated and released after the nanoparticles have captured target molecules, overcoming the problem of low magnetophoretic mobility of the individual particle while retaining the advantages of a high surface to volume ratio and faster diffusive properties during target capture.
机译:已经开发了一种用于诊断目标捕获和浓缩的刺激响应磁性纳米颗粒系统,用于微流体实验室卡设置。采用可逆加成碎裂转移技术合成了一端为十二烷基尾部、另一端为活性羧酸盐的Telechelic poly(N-isopropylacrylamide)(PNIPAAm)聚合物链.这些PNIPAAm链自缔合成纳米级胶束,这些胶束被用作合成磁性纳米颗粒的尺寸限制。由此产生的超顺磁性纳米颗粒表现出一个γ-Fe 2 O3核心(类似于5nm),表面有一层羧酸盐封端的PNIPAAm链作为电晕。羧酸酯基团用于用生物素和随后的链霉亲和素使磁性纳米颗粒功能化。当温度通过PNIPAAm较低的临界溶液温度(LCST)循环时,功能化的磁性纳米颗粒可以在溶液中可逆地聚集。虽然LCST下方单个纳米颗粒的磁泳迁移率可以忽略不计,但在LCST上方形成的聚集体足够大,可以响应施加的磁场。磁性纳米颗粒可以作为单个颗粒与生物素化靶标结合,然后随后施加温度升高和磁场的组合可用于将聚集的颗粒磁性地分离到微流控装置的聚(乙二醇)改性的聚二甲基硅氧烷通道壁上。当磁场关闭且温度反转时,捕获的聚集体重新分散到通道流中,以便进一步进行下游处理。因此,磁性和温度响应的双重纳米颗粒可以用作可溶性试剂,以在受控的时间点和通道位置捕获诊断靶标。然后,在纳米颗粒捕获目标分子后,它们可以被分离和释放,克服了单个颗粒的低磁光迁移率问题,同时保留了高表面体积比和目标捕获过程中更快的扩散特性的优点。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号