...
首页> 外文期刊>Information Sciences: An International Journal >Adaptive graph construction using data self-representativeness for pattern classification
【24h】

Adaptive graph construction using data self-representativeness for pattern classification

机译:使用数据自表示性进行模式分类的自适应图构建

获取原文
获取原文并翻译 | 示例
           

摘要

Graph construction from data constitutes a pre-stage in many machine learning and computer vision tasks, like semi-supervised learning, manifold learning, and spectral clustering. The influence of graph construction procedures on learning tasks and their related applications has only received limited study despite its critical impact on accuracy. State-of-the-art graphs are built via sparse coding adopting l(1) regularization. Those graphs exhibit good performance in many computer vision applications. However, the locality and similarity among instances are not explicitly used in the coding scheme. Furthermore, due to the use of l(1) regularization, these construction approaches can be computationally expensive. In this paper, we investigate graph construction using the data self-representativeness property. By incorporating a variant of locality-constrained linear coding (LLC), we introduce and derive four variants for graph construction. These variants adopt a two phase LLC (TPLLC). Compared with the recent l(1) graphs, our proposed objective function, associated with three variants, has an analytical solution, and thus, is more efficient. A key element of the proposed methods is the second phase of coding that allows data closeness, or locality, to be naturally incorporated. It performs a coding over some selected relevant samples and reinforces the individual regularization terms by exploiting the coefficients estimated in the first phase. Comprehensive experimental results using several benchmark datasets show that it can achieve or outperform existing state-of-the-art results. Furthermore, it is shown to be more efficient than the robust l(1) graph construction schemes. (C) 2015 Elsevier Inc. All rights reserved.
机译:从数据构造图形构成了许多机器学习和计算机视觉任务的前期准备,例如半监督学习,流形学习和频谱聚类。尽管图形构建程序对准确性有关键影响,但对其学习任务及其相关应用程序的影响仅受到了有限的研究。最新的图是通过采用l(1)正则化的稀疏编码构建的。这些图形在许多计算机视觉应用程序中均表现出良好的性能。但是,在编码方案中并未明确使用实例之间的局部性和相似性。此外,由于使用l(1)正则化,这些构造方法在计算上可能会很昂贵。在本文中,我们研究了使用数据自表示性的图构造。通过合并局部约束线性编码(LLC)的变体,我们引入并推导了用于图构造的四个变体。这些变体采用两相LLC(TPLLC)。与最近的l(1)图相比,我们提出的目标函数与三个变量相关联,具有解析解,因此效率更高。所提出的方法的关键要素是编码的第二阶段,该第二阶段允许自然地合并数据的紧密性或局部性。它对一些选定的相关样本执行编码,并通过利用在第一阶段估计的系数来增强各个正则项。使用多个基准数据集的综合实验结果表明,它可以达到或优于现有的最新结果。此外,它显示出比健壮的l(1)图构造方案更有效。 (C)2015 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号