We compare measurements of magnetization profiles across a 180° surface domain wall in a 0.24‐mgr;m‐thick of Permalloy (Ni81Fe19), obtained with scanning electron microscopy with polarization analysis (SEMPA) and longitudinal magneto‐optic (MO) Kerr microscopy with the predictions of a bulk micromagnetic theory. Both measurement techniques yield wall profiles in accordance with the predictions of micromagnetic theory. We conclude that for micromagnetic structure with relevant length scales on the order of tens of nanometers, SEMPA and MO Kerr microscopy yield equivalent quantitative micromagnetic information within the transverse spatial resolution limits of each technique. Near‐surface effects such as enhanced surface moments, weakened surface exchange, and surface anisotropy are not important in determining the surface domain wall profiles that we observe.
展开▼