首页> 外文期刊>Computing: Archives for informatics and numerical computation >Nitsche type mortaring for singularly perturbed reaction-diffusion problems
【24h】

Nitsche type mortaring for singularly perturbed reaction-diffusion problems

机译:尼采型砂浆处理奇异扰动反应扩散问题

获取原文
获取原文并翻译 | 示例

摘要

The paper is concerned with the Nitsche mortaring in the framework of domain decomposition where non-matching meshes and weak continuity of the finite element approximation at the interface are admitted. The approach is applied to singularly perturbed reaction-diffusion problems in 2D. Non-matching meshes of triangles being anisotropic in the boundary layers are applied. Some properties as well as error estimates of the Nitsche mortar finite element schemes are proved. In particular, using a suitable degree of anisotropy of triangles in the boundary layers of a rectangle, convergence rates as known for the conforming finite element method are derived. Numerical examples illustrate the approach and the results.
机译:本文关注的是域分解框架下的尼采砂浆,其中承认界面处有限元近似的不匹配网格和弱连续性。该方法适用于二维中的奇异扰动反应扩散问题。应用边界层中各向异性的三角形的非匹配网格。证明了尼采砂浆有限元方案的一些性质和误差估计.特别是,使用矩形边界层中三角形的适当各向异性程度,推导出符合有限元方法已知的收敛率。数值算例说明了该方法和结果。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号