...
首页> 外文期刊>Interface science >Effect of High-Temperature Structure and Diffusion on Grain-Boundary Diffusion Creep in fcc Metals
【24h】

Effect of High-Temperature Structure and Diffusion on Grain-Boundary Diffusion Creep in fcc Metals

机译:高温结构和扩散对fcc金属中晶界扩散蠕变的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Molecular dynamics simulations of high-energy twist and tilt bicrystals of fcc palladium reveal a universal, liquid-like, isotropic high-temperature diffusion mechanism, characterized by a rather low self-diffusion activation energy that is independent of the boundary type or misorientation. Medium-energy grain boundaries exhibit the same behavior at the highest temperatures; however, at lower temperatures the diffusion mechanisms becomes anisotropic, with a higher, misorientation-dependent activation energy. Our simulations demonstrate that the lower activation energy at elevated temperatures is caused by a structural transition, from a solid boundary structure at low temperatures to a liquid-like structure at high temperatures. We demonstrate that the existence of such a transition has important consequences for diffusion creep in nanocrystalline fcc metals. In particular, our simulations reveal that in the absence of grain growth, nanocrystalline microstructures containing only high-energy grain boundaries exhibit steady-state diffusion creep with a creep rate that agrees quantitatively with that given by the Coble-creep formula. Remarkably, the activation energy for the high-temperature creep rate is the same as that characterizing the universal high-temperature diffusion in high-energy energy bicrystalline grain boundaries.
机译:fcc钯的高能扭曲和倾斜双晶的分子动力学模拟揭示了一种通用的,液体状的,各向同性的高温扩散机制,其特征是具有相当低的自扩散活化能,而与边界类型或取向错误无关。中能晶界在最高温度下表现出相同的行为。但是,在较低的温度下,扩散机制将变得各向异性,并具有较高的,取决于取向的活化能。我们的模拟表明,高温下较低的活化能是由结构转变引起的,从低温下的固态边界结构到高温下的液态结构。我们证明这种过渡的存在对纳米晶FCC金属中的扩散蠕变具有重要的影响。特别地,我们的模拟表明,在没有晶粒生长的情况下,仅包含高能晶界的纳米晶体微观结构表现出稳态扩散蠕变,其蠕变速率与Coble蠕变公式定量给出的蠕变速率一致。值得注意的是,高温蠕变速率的活化能与表征高能能量双晶界中普遍高温扩散的活化能相同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号