首页> 外文期刊>Integrative and Comparative Biology >Hypoxia Tolerance and Metabolic Suppression in Oxygen Minimum Zone Euphausiids: Implications for Ocean Deoxygenation and Biogeochemical Cycles
【24h】

Hypoxia Tolerance and Metabolic Suppression in Oxygen Minimum Zone Euphausiids: Implications for Ocean Deoxygenation and Biogeochemical Cycles

机译:缺氧耐受性和最小氧的最小代谢区的代谢抑制:海洋脱氧和生物地球化学循环的意义。

获取原文
获取原文并翻译 | 示例
           

摘要

The effects of regional variations in oxygen and temperature levels with depth were assessed for the metabolism and hypoxia tolerance of dominant euphausiid species. The physiological strategies employed by these species facilitate prediction of changing vertical distributions with expanding oxygen minimum zones and inform estimates of the contribution of vertically migrating species to biogeochemical cycles. The migrating species from the Eastern Tropical Pacific (ETP), Euphausia eximia and Nematoscelis gracilis, tolerate a Partial Pressure (PO2) of 0.8 kPa at 10 degrees C (similar to 15 mM O-2) for at least 12 h without mortality, while the California Current species, Nematoscelis difficilis, is incapable of surviving even 2.4 kPa PO2 (similar to 32 mu M O-2) for more than 3 h at that temperature. Euphausia diomedeae from the Red Sea migrates into an intermediate oxygen minimum zone, but one in which the temperature at depth remains near 22 degrees C. Euphausia diomedeae survived 1.6 kPa PO2 (similar to 22 mu M O-2) at 22 degrees C for the duration of six hour respiration experiments. Critical oxygen partial pressures were estimated for each species, and, for E. eximia, measured via oxygen consumption (2.1 kPa, 10 degrees C, n = 2) and lactate accumulation (1.1 kPa, 10 degrees C). A primary mechanism facilitating low oxygen tolerance is an ability to dramatically reduce energy expenditure during daytime forays into low oxygen waters. The ETP and Red Sea species reduced aerobic metabolism by more than 50% during exposure to hypoxia. Anaerobic glycolytic energy production, as indicated by whole-animal lactate accumulation, contributed only modestly to the energy deficit. Thus, the total metabolic rate was suppressed by similar to 49-64%. Metabolic suppression during diel migrations to depth reduces the metabolic contribution of these species to vertical carbon and nitrogen flux (i.e., the biological pump) by an equivalent amount. Growing evidence suggests that metabolic suppression is a widespread strategy among migrating zooplankton in oxygen minimum zones and may have important implications for the economy and ecology of the oceans. The interacting effects of oxygen and temperature on the metabolism of oceanic species facilitate predictions of changing vertical distribution with climate change.
机译:评估了氧气和温度水平随深度的区域变化对优势种的代谢和耐缺氧性的影响。这些物种采用的生理策略有助于预测随着氧气最小区域的扩大而变化的垂直分布,并有助于估计垂直迁移物种对生物地球化学循环的贡献。来自东部热带太平洋(ETP),Euphausia eximia和Nematoscelis gracilis的迁徙物种在10摄氏度(类似于15 mM O-2)下能承受0.8 kPa的分压(PO2)至少12小时而无死亡,而在这种温度下,加利福尼亚州近缘种Nematoscelis difficilis甚至无法在2.4 kPa PO2(类似于32μM O-2)中存活3小时以上。来自红海的二重紫杉科植物迁徙到一个最低氧中间区域,但其中的深度温度仍保持在22摄氏度左右。二重紫杉科植物在22摄氏度下存活了1.6 kPa PO2(类似于22μM O-2)。持续六个小时的呼吸实验。估计每种物种的临界氧分压,对于埃克森姆菌,通过耗氧量(2.1 kPa,10摄氏度,n = 2)和乳酸积累(1.1 kPa,10摄氏度)进行测量。促进低氧耐受性的主要机制是能够大幅减少白天进入低氧水中的能量消耗。在暴露于缺氧状态下,ETP和红海物种将有氧代谢降低了50%以上。全动物乳酸的积累表明厌氧糖酵解能量的产生仅适度地导致了能量缺乏。因此,总代谢率被抑制约49-64%。在diel迁移到深度过程中的代谢抑制将这些物种对垂直碳和氮通量(即生物泵)的代谢贡献降低了等量。越来越多的证据表明,代谢抑制是在最小限氧区迁移浮游动物中的一项广泛策略,可能对海洋的经济和生态产生重要影响。氧气和温度对海洋物种代谢的相互作用影响有助于预测垂直分布随气候变化而变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号