...
首页> 外文期刊>Integral transforms and special functions >On the application of special functions to non-linear and unsteady stability: (part I) method of iterative solution of a coupled non-linear system
【24h】

On the application of special functions to non-linear and unsteady stability: (part I) method of iterative solution of a coupled non-linear system

机译:关于特殊函数在非线性和不稳定稳定性上的应用:(第一部分)耦合非线性系统的迭代解方法

获取原文
获取原文并翻译 | 示例
           

摘要

A new approach to longitudinal airplane stability is presented (§1), which is more general than the method of linear, constant stability derivatives, and allows oscillations which are non-sinusoidal and non-periodic, and amplitude growth or decay which is non-exponential. This approach to the solution of the non-linear, coupled equations of longitudinal motion of an airplane (§2.1), uses an iterative, cyclic method (§2.2), as follows: (i) a constant flight path angle is assumed, and elimination between the two force balance equations, gives airspeed as a function of distance along the flight path (§2.3); (ii) this airspeed variation is fed into the pitching moment equation, to specify an angle-of-attack oscillation with changing frequency (§2.4); (iii) the flight path angle is calculated from the airspeed (i) and angle-of-attack (ii), to determine the deviation from the preceding iteration (§4.1), and stop the cyclic process if the change is small (as discussed in Part II). The airspeed variation is (a) an exponential function of distance for small deviation from initial airspeed (§2.3), and simplifies further to a (b) a linear function of distance, for distance short compared to aerodynamic lengthscale (§3.1). The angle-of attack response (§3) is specified by: (§3.1) Bessel functions, for linear airspeed variation without damping: (§3.2) confluent hypergeometric functions for linear airspeed variation with damping; (§3.3-3.4) Gaussian hypergeometric functions, for exponential airspeed variation without (§3.3) or with (§3.4) damping. These results are further developed in Part II.
机译:提出了一种纵向飞机稳定性的新方法(第1节),该方法比线性,恒定稳定性导数的方法更通用,并且允许非正弦和非周期性的振荡,以及非正弦的振幅增长或衰减。指数的。这种解决飞机纵向运动的非线性耦合方程的方法(第2.1节)采用迭代循环方法(第2.2节),如下所示:(i)假定飞行角恒定,并且消除两个力平衡方程之间的关系,得出空速是沿着飞行路径的距离的函数(第2.3节); (ii)将这种空速变化输入到俯仰力矩方程中,以指定随频率变化的攻角振荡(第2.4节); (iii)根据空速(i)和攻角(ii)计算飞行角度,以确定与先前迭代(§4.1)的偏差,如果变化很小,则停止循环过程(如在第二部分中讨论)。空速变化是(a)与初始空速的偏差很小的距离的指数函数(第2.3节),对于距离短于空气动力学长度尺度(第3.1节)的情况,它进一步简化为(b)距离的线性函数。迎角响应(§3)由以下参数指定:(§3.1)贝塞尔函数,用于不带阻尼的线性空速变化:(§3.2)汇合的超几何函数,用于不带阻尼的线性空速变化; (§3.3-3.4)高斯超几何函数,用于无(§3.3)或有(§3.4)阻尼的指数空速变化。这些结果将在第二部分中进一步发展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号