首页> 外文期刊>journal of time series analysis >EXACT MAXIMUM LIKELIHOOD ESTIMATE AND LAGRANGE MULTIPLIER TEST STATISTIC FOR ARMA MODELS
【24h】

EXACT MAXIMUM LIKELIHOOD ESTIMATE AND LAGRANGE MULTIPLIER TEST STATISTIC FOR ARMA MODELS

机译:ARMA 模型的精确最大似然估计和拉格朗日乘数检验统计量

获取原文

摘要

Abstract.The paper provides a method for the computation of the derivatives of the exact log likelihood function of a Gaussian time series. Based on this result and using Fisher's scoring technique, an efficient method for computing the maximum likelihood estimates for an autoregressive moving average model has been obtained. Simulations suggest that the new procedure is as fast as the Box and Jenkins conditional least squares method. In a similar way, a procedure is derived to compute the Lagrange multiplier test statistics for testing the goodness of fit of the model.
机译:摘要:提供一种高斯时间序列精确对数似然函数导数的计算方法。基于这一结果,利用Fisher评分技术,得到了一种计算自回归移动平均模型最大似然估计的有效方法。仿真表明,新过程与 Box 和 Jenkins 条件最小二乘法一样快。以类似的方式,推导出一个程序来计算拉格朗日乘子检验统计量,以检验模型的拟合优度。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号