首页> 外文期刊>The Quarterly Journal of Mechanics and Applied Mathematics >On the inverse parabolicity of pdf equations in turbulent flows
【24h】

On the inverse parabolicity of pdf equations in turbulent flows

机译:关于湍流中pdf方程的反向抛斜度

获取原文
获取原文并翻译 | 示例

摘要

The focus of the present work is the well-known feature of the probability density function (PDF) transport equations in turbulent flows-the inverse parabolicity of the equations. While it is quite common in fluid mechanics to interpret equations with direct (forward-time) parabolicity as diffusive (or as a combination of diffusion, convection and reaction), the possibility of a similar interpretation for equations with inverse parabolicity is not clear. According to Einstein's point of view, a diffusion process is associated with the random walk of some physical or imaginary particles, which can be modelled by a Markov diffusion process. In the present paper it is shown that the Markov diffusion process directly associated with the PDF equation represents a reasonable model for dealing with the PDFs of scalars but it significantly underestimates the diffusion rate required to simulate turbulent dispersion when the velocity components are considered.
机译:本研究的重点是湍流中概率密度函数(PDF)输运方程的众所周知的特征——方程的反抛曲线性。虽然在流体力学中,将具有直接(正向时间)抛物性的方程解释为扩散(或扩散、对流和反应的组合)是很常见的,但对于具有逆抛物性的方程,类似解释的可能性尚不清楚。根据爱因斯坦的观点,扩散过程与一些物理或假想粒子的随机游走有关,这可以通过马尔可夫扩散过程进行建模。本文表明,与PDF方程直接相关的马尔可夫扩散过程代表了处理标量PDF的合理模型,但在考虑速度分量时,它大大低估了模拟湍流色散所需的扩散速率。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号