首页> 外文期刊>Metabolomics : >Multivariate strategy for the sample selection and integration of multi-batch data in metabolomics
【24h】

Multivariate strategy for the sample selection and integration of multi-batch data in metabolomics

机译:代谢组学中多批次数据的样本选择和整合的多变量策略

获取原文
获取原文并翻译 | 示例

摘要

Introduction Availability of large cohorts of samples with related metadata provides scientists with extensive material for studies. At the same time, recent development of modern high-throughput 'omics' technologies, including metabolomics, has resulted in the potential for analysis of large sample sizes. Representative subset selection becomes critical for selection of samples from bigger cohorts and their division into analytical batches. This especially holds true when relative quantification of compound levels is used.
机译:引言 具有相关元数据的大量样本队列的可用性为科学家提供了广泛的研究材料。与此同时,包括代谢组学在内的现代高通量“组学”技术的最新发展带来了分析大样本量的潜力。代表性子集的选择对于从更大的队列中选择样品并将其划分为分析批次至关重要。当使用化合物水平的相对定量时尤其如此。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号