We define P-r(q) to be the generating functionwhich counts the total number of distinct (sequential) r -tuples in partitions of n and Q(r)(q, u) to be the corresponding bivariate generating function where u tracks the number of distinct r-tuples. These statistics generalise the number of distinct parts in a partition. In the early part of this paper we develop the tools by finding these generating functions for small cases r = 2 and r = 3. Then we use these methods to obtain P-r(q) and Q(r)(q, u) in the case of general r -tuples. These formulae are used to find the average number of distinct r-tuples for fixed r, as n -> infinity. Finally we show that as r -> infinity, q(-r) P-r(q) converges to an explicitly determined power series.
展开▼
机译:我们将 P-r(q) 定义为生成函数,它计算 n 分区中不同(顺序)r 元组的总数,并将 Q(r)(q, u) 定义为相应的双变量生成函数,其中 u 跟踪不同 r 元组的数量。这些统计信息概括了分区中不同部分的数量。在本文的前半部分,我们通过找到这些小情况的生成函数来开发工具:r = 2 和 r = 3。然后,我们使用这些方法在一般 r 元组的情况下获得 P-r(q) 和 Q(r)(q, u)。这些公式用于查找固定 r 的不同 r 元组的平均数,如 n -> 无穷大。最后,我们证明,当 r -> 无穷大时,q(-r) P-r(q) 收敛到一个明确确定的幂级数。
展开▼