...
首页> 外文期刊>Brain research >Functional characterization of Na+ -coupled citrate transporter NaC2/NaCT expressed in primary cultures of neurons from mouse cerebral cortex.
【24h】

Functional characterization of Na+ -coupled citrate transporter NaC2/NaCT expressed in primary cultures of neurons from mouse cerebral cortex.

机译:Na +耦合的柠檬酸盐转运蛋白NaC2 / NaCT在小鼠大脑皮层神经元原代培养物中表达的功能表征。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Neurons are known to express a high-affinity Na+ -coupled dicarboxylate transporter(s) for uptake of tricarboxylic acid cycle intermediates, such as alpha-ketoglutarate and malate, which are precursors for neurotransmitters including glutamate and gamma-aminobutyric acid. There is, however, little information available on the molecular identity of the transporters responsible for this uptake process in neurons. In the present study, we investigated the characteristics of Na+ -dependent citrate transport in primary cultures of neurons from mouse cerebral cortex and established the molecular identity of this transport system as the Na+ -coupled citrate transporter (NaC2/NaCT). Reverse transcriptase (RT)-PCR and immunocytochemical analyses revealed that only NaC2/NaCT was expressed in mouse cerebrocortical neurons but not in astrocytes. Uptake of citrate in neurons was Na+ -dependent, Li+ -sensitive, and saturable with the Kt value of 12.3 microM. This Kt value was comparable with that in the case of Na+ -dependent succinate transport (Kt = 9.2 microM). Na+ -activation kinetics revealed that the Na+ -to-citrate stoichiometry was 3.4:1 and concentration of Na+ necessary for half-maximal activation (K0.5(Na)) was 45.7 mM. Na+ -dependent uptake of [14C]citrate (18 microM) was significantly inhibited by unlabeled citrate as well as dicarboxylates such as succinate, malate, fumarate, and alpha-ketoglutarate. This is the first report demonstrating the molecular identity of the Na+ -coupled di/tricarboxylate transport system expressed in neurons as NaC2/NaCT, which can transport the tricarboxylate citrate as well as dicarboxylates such as succinate, alpha-ketoglutarate, and malate.
机译:已知神经元表达高亲和力的Na +偶联的二羧酸盐转运蛋白,以摄取三羧酸循环中间体,例如α-酮戊二酸和苹果酸,它们是包括谷氨酸盐和γ-氨基丁酸在内的神经递质的前体。但是,关于负责神经元摄取过程的转运蛋白的分子身份信息很少。在本研究中,我们调查了小鼠大脑皮层神经元原代培养物中Na +依赖性柠檬酸盐转运的特征,并确定了该转运系统作为Na +偶联柠檬酸盐转运蛋白(NaC2 / NaCT)的分子身份。逆转录酶(RT)-PCR和免疫细胞化学分析表明,仅NaC2 / NaCT在小鼠脑皮质神经元中表达,而在星形胶质细胞中不表达。神经元中柠檬酸盐的摄取是Na +依赖性的,Li +敏感的并且可饱和,其Kt值为12.3 microM。该Kt值与依赖Na +的琥珀酸盐转运的情况相当(Kt = 9.2 microM)。 Na +活化动力学表明,Na +与柠檬酸的化学计量比为3.4:1,半最大活化所需的Na +浓度(K0.5(Na))为45.7 mM。未标记的柠檬酸盐以及二羧酸盐(如琥珀酸盐,苹果酸盐,富马酸盐和α-酮戊二酸)显着抑制了Na +依赖的[14C]柠檬酸盐(18 microM)的摄取。这是第一份证明在神经元中表达的Na +偶联的二/三羧酸盐转运系统的分子身份的NaC2 / NaCT,它可以转运柠檬酸三羧酸盐以及琥珀酸,α-酮戊二酸和苹果酸等二羧酸盐。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号