首页> 外文期刊>ILAR Journal >Noninvasive bioluminescence imaging in small animals
【24h】

Noninvasive bioluminescence imaging in small animals

机译:小动物的无创生物发光成像

获取原文
获取原文并翻译 | 示例
       

摘要

There has been a rapid growth of bioluminescence imaging applications in small animal models in recent years, propelled by the availability of instruments, analysis software, reagents, and creative approaches to apply the technology in molecular imaging. Advantages include the sensitivity of the technique as well as its efficiency, relatively low cost, and versatility. Bioluminescence imaging is accomplished by sensitive detection of light emitted following chemical reaction of the luciferase enzyme with its substrate. Most imaging systems provide 2-dimensional (2D) information in rodents, showing the locations and intensity of light emitted from the animal in pseudo-color scaling. A 3-dimensional (3D) capability for bioluminescence imaging is now available, but is more expensive and less efficient; other disadvantages include the requirement for genetically encoded luciferase, the injection of the substrate to enable light emission, and the dependence of light signal on tissue depth. All of these problems make it unlikely that the method will be extended to human studies. However, in small animal models, bioluminescence imaging is now routinely applied to serially detect the location and burden of xenografted tumors, or identify and measure the number of immune or stem cells after an adoptive transfer. Bioluminescence imaging also makes it possible to track the relative amounts and locations of bacteria, viruses, and other pathogens over time. Specialized applications of bioluminescence also follow tissue-specific luciferase expression in transgenic mice, and monitor biological processes such as signaling or protein interactions in real time. In summary, bioluminescence imaging has become an important component of biomedical research that will continue in the future.
机译:近年来,由于仪器,分析软件,试剂以及将技术应用于分子成像的创新方法的推动,生物发光成像在小型动物模型中的应用迅速增长。优点包括该技术的灵敏度及其效率,相对较低的成本和多功能性。通过荧光素酶与底物化学反应后发出的光的灵敏检测,可以完成生物发光成像。大多数成像系统在啮齿动物中提供二维(2D)信息,以伪彩色比例显示从动物发出的光的位置和强度。现在可以使用3D(3D)生物发光成像功能,但是价格更高且效率更低。其他缺点包括需要遗传编码的萤光素酶,注入基质以实现发光以及光信号对组织深度的依赖性。所有这些问题使得该方法不太可能扩展到人类研究。但是,在小型动物模型中,现在通常将生物发光成像技术用于顺序检测异种移植肿瘤的位置和负担,或者识别和测量过继转移后免疫细胞或干细胞的数量。生物发光成像还使得随着时间的推移跟踪细菌,病毒和其他病原体的相对数量和位置成为可能。生物发光的特殊应用还遵循转基因小鼠中组织特异性荧光素酶的表达,并实时监测生物过程,例如信号或蛋白质相互作用。总而言之,生物发光成像已经成为生物医学研究的重要组成部分,并将在未来继续发展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号