首页> 外文期刊>電子情報通信学会技術研究報告. デ-タ工学. Data Engineering >Design, implementation and performance evaluation of similar image retrieval system based on self-organizing feature map
【24h】

Design, implementation and performance evaluation of similar image retrieval system based on self-organizing feature map

机译:基于自组织特征图的相似图像检索系统设计、实现及性能评估

获取原文
获取原文并翻译 | 示例

摘要

The paper describes a new method to extract and cluster image features for effective still image database. The features concerning color and texture are extracted using the multiresolution analysis. Contrast to traditional image databases where feature vectors extracted from stored images are stored and are used to match the feature vector of the input image1 we use the Self-Organizing Maps neural network for clustering stored images and generate topological feature maps with codebook vectors represented similarity between feature vectors. No feature vectors is stored in the databases, since similar retrieval is performed between codebook vectors and feature vectors. A prototype image database is developed and we experiments on the method of retrieval by example and subspace for image data. The paper reports on the architecture and experimental results.
机译:本文介绍了一种提取和聚类图像特征的新方法,以建立有效的静止图像数据库。使用多分辨率分析提取有关颜色和纹理的特征。与传统的图像数据库相比,传统的图像数据库存储了从存储图像中提取的特征向量,并用于匹配输入图像的特征向量1,我们使用自组织映射神经网络对存储的图像进行聚类,并生成拓扑特征图,其中代码本向量表示特征向量之间的相似性。数据库中不存储任何特征向量,因为在码本向量和特征向量之间执行类似的检索。建立了图像数据库原型,并对图像数据的实例检索方法和子空间进行了实验。本文对架构和实验结果进行了综述。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号