首页> 外文期刊>the quarterly journal of mechanics and applied mathematics >SOME EXTENSIONS TO THE METHOD OF INTEGRATION BY STEEPEST DESCENTS
【24h】

SOME EXTENSIONS TO THE METHOD OF INTEGRATION BY STEEPEST DESCENTS

机译:通过最陡峭的下降对整合方法的一些扩展

获取原文

摘要

In practical cases the assumption of small values by certain parameters may invalidate the usual method of integration by steepest descents when it would be otherwise applicable. The two ways in which this can happen are treated by using the concept of a partial asymptotic expansion, the terms of which are functions, rather than inverse powers, of the relevant variable. It is shown that the theory of Watson's lemma, and a device due to Jeffreys for estimating the‘remainder’, can be extended to these partial expansions. The general terms are expressed in the form of Hhnor confluent hypergeometric functions, and the leading term may reduce to a complex Fresnel integral. Two examples are given from the theory of wave propagat
机译:在实际情况下,某些参数对小值的假设可能会使通常的通过最陡峭的下降积分方法无效,而在其他情况下,这种方法是适用的。使用部分渐近展开的概念来处理这种情况的两种方式,其项是相关变量的函数,而不是逆幂。结果表明,沃森引理理论,以及杰弗里斯用于估计“余数”的装置,可以扩展到这些部分展开。一般项以 Hhnor 汇合超几何函数的形式表示,而前导项可以简化为复菲涅耳积分。从波传播理论中给出了两个例子

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号