首页> 外文期刊>Monthly weather review >Comparing the Assimilation of Radar Reflectivity Using the Direct GSI-Based Ensemble-Variational (EnVar) and Indirect Cloud Analysis Methods in Convection-Allowing Forecasts over the Continental United States
【24h】

Comparing the Assimilation of Radar Reflectivity Using the Direct GSI-Based Ensemble-Variational (EnVar) and Indirect Cloud Analysis Methods in Convection-Allowing Forecasts over the Continental United States

机译:比较使用基于直接GSI的集合变分(EnVar)和间接云分析方法在美国大陆上空的对流预报中对雷达反射率的同化

获取原文
获取原文并翻译 | 示例

摘要

Two methods for assimilating radar reflectivity into deterministic convection-allowing forecasts were compared: an operationally used, computationally less expensive cloud analysis (CA) scheme and a relatively more expensive, but rigorous, ensemble Kalman filter-variational hybrid method (EnVar). These methods were implemented in the Nonhydrostatic Multiscale Model on the B-grid and were tested on 10 cases featuring high-impact deep convective storms and heavy precipitation. A variety of traditional, neighborhood-based, and features-based verification metrics support that the EnVar produced superior free forecasts compared to the CA procedure, with statistically significant differences extending up to 9 h into the forecast. Despite being inferior, the CA scheme was able to provide benefit compared to not assimilating radar reflectivity at all, but limited to the first few forecast hours. While the EnVar is able to partially suppress spurious convection by assimilating 0-dBZ reflectivity observations directly, the CA is not designed to reduce or remove hydrometeors. As a result, the CA struggles more with suppression of spurious convection in the first-guess field, which resulted in high-frequency biases and poor forecast evolution, as illustrated in a few case studies. Additionally, while the EnVar uses flow-dependent ensemble covariances to update hydrometers, thermodynamic, and dynamic variables simultaneously when the reflectivity is assimilated, the CA relies on a radar reflectivity-derived latent heating rate that is applied during a separate digital filter initialization (DFI) procedure to introduce deep convective storms into the model, and the results of CA are shown to be sensitive to the window length used in the DFI.
机译:比较了两种将雷达反射率同化为确定性对流预报的方法:一种是操作上使用的、计算成本较低的云分析(CA)方案,另一种是相对更昂贵但更严格的集成卡尔曼滤波变分混合方法(EnVar)。这些方法在B网格上的非静水多尺度模型中实施,并在10个具有高冲击深对流风暴和强降水的案例中进行了测试。各种传统的、基于邻域的和基于特征的验证指标支持,与 CA 程序相比,EnVar 产生了更好的免费预测,统计学上的显着差异延伸到预测的 9 小时。尽管CA方案较差,但与完全不吸收雷达反射率相比,CA方案能够提供好处,但仅限于最初的几个预测小时。虽然EnVar能够通过直接吸收0 dBZ反射率观测值来部分抑制杂散对流,但CA并非旨在减少或去除水凝物。因此,CA在抑制第一猜测场中的杂散对流方面更加困难,这导致了高频偏差和不良的预测演化,如一些案例研究所示。此外,当反射率被同化时,EnVar 使用与流量相关的集合协方差同时更新比重计、热力学和动态变量,而 CA 依赖于雷达反射率得出的潜热速率,该速率在单独的数字滤波器初始化 (DFI) 过程中应用,以将深对流风暴引入模型,并且 CA 的结果显示对 DFI 中使用的窗口长度敏感。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号