首页> 外文期刊>Transportation research, Part C. Emerging technologies >Real time detection of driver attention: Emerging solutions based on robust iconic classifiers and dictionary of poses
【24h】

Real time detection of driver attention: Emerging solutions based on robust iconic classifiers and dictionary of poses

机译:实时检测驾驶员注意力:基于鲁棒的标志性分类器和姿势字典的新兴解决方案

获取原文
获取原文并翻译 | 示例

摘要

Real time monitoring of driver attention by computer vision techniques is a key issue in the development of advanced driver assistance systems. While past work mostly focused on structured feature-based approaches, characterized by high computational requirements, emerging technologies based on iconic classifiers recently proved to be good candidates for the implementation of accurate and real-time solutions, characterized by simplicity and automatic fast training stages. In this work the combined use of binary classifiers and iconic data reduction, based on Sanger neural networks, is proposed, detailing critical aspects related to the application of this approach to the specific problem of driving assistance. In particular it is investigated the possibility of a simplified learning stage, based on a small dictionary of poses, that makes the system almost independent from the actual user. On-board experiments demonstrate the effectiveness of the approach, even in case of noise and adverse light conditions. Moreover the system proved unexpected robustness to various categories of users, including people with beard and eyeglasses. Temporal integration of classification results, together with a partial distinction among visual distraction and fatigue effects, make the proposed technology an excellent candidate for the exploration of adaptive and user-centered applications in the automotive field.
机译:通过计算机视觉技术实时监控驾驶员注意力是高级驾驶员辅助系统开发的关键问题。虽然过去的工作主要集中在基于结构化特征的方法上,其特点是计算要求高,但基于标志性分类器的新兴技术最近被证明是实现准确和实时解决方案的良好候选者,其特点是简单和自动快速训练阶段。在这项工作中,提出了基于Sanger神经网络的二元分类器和标志性数据缩减的组合使用,详细介绍了与将这种方法应用于驾驶辅助特定问题相关的关键方面。特别是,它研究了基于小型姿势字典的简化学习阶段的可能性,这使得系统几乎独立于实际用户。机载实验证明了该方法的有效性,即使在噪声和不利的光线条件下也是如此。此外,该系统对各种类别的用户(包括留胡子和戴眼镜的人)证明了意想不到的鲁棒性。分类结果的时间整合,以及视觉分心和疲劳效应之间的部分区分,使所提出的技术成为探索汽车领域自适应和以用户为中心的应用的绝佳候选者。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号