首页> 外文期刊>IEEE Network: The Magazine of Computer Communications >Edge-Learning-Enabled Realistic Touch and Stable Communication for Remote Haptic Display
【24h】

Edge-Learning-Enabled Realistic Touch and Stable Communication for Remote Haptic Display

机译:支持边缘学习的逼真触摸和稳定的通信,用于远程触觉显示

获取原文
获取原文并翻译 | 示例

摘要

As the basis of Tactile Internet, remote haptic display has been made possible with the development of ultra-reliable low-latency communication in 5G. In this study, edge learning is employed to enable realistic haptic display and stable remote communication. We propose a double-loop control algorithm, which merges decoupling and PID neural network, for magnetic field generation of the electromagnetic haptic device. In addition, a supervised bidirectional LSTM network is constructed for online haptic prediction during remote interaction, thus complementing the missing haptic data on account of time delay and packet loss in network communications. Experiments have been conducted on the built remote haptic display system, where data streams from sensors are gathered, stored, and forwarded in real time. The results show that dynamic and accurate haptic display is achieved through our magnetic field control algorithm for the haptic device, and the error of haptic prediction by step is less than 0.01N. The conclusion is that the service sustainability of remote haptic display can be guaranteed by edge learning effectively.
机译:作为触觉互联网的基础,随着 5G 中超可靠低延迟通信的发展,远程触觉显示已成为可能。在这项研究中,边缘学习被用来实现逼真的触觉显示和稳定的远程通信。我们提出了一种双环控制算法,该算法融合了解耦和PID神经网络,用于电磁触觉器件的磁场生成。此外,还构建了一个有监督的双向LSTM网络,用于远程交互期间的在线触觉预测,从而补充了网络通信中由于时间延迟和数据包丢失而缺失的触觉数据。实验已经在构建的远程触觉显示系统上进行,该系统实时收集、存储和转发来自传感器的数据流。结果表明,通过我们的触觉器件磁场控制算法实现了动态、准确的触觉显示,触觉分步预测误差小于0.01N。结论是,边缘学习可以有效地保证远程触觉显示的服务可持续性。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号