首页> 外文期刊>Expert Systems with Application >An adaptive Grey-Markov model based on parameters Self-optimization with application to passenger flow volume prediction
【24h】

An adaptive Grey-Markov model based on parameters Self-optimization with application to passenger flow volume prediction

机译:基于参数自优化的自适应格雷马尔可夫模型及其在客流量预测中的应用

获取原文
获取原文并翻译 | 示例

摘要

It has been demonstrated that local prediction approaches show better prediction performance compared with global ones. The paper proposes a novel local prediction model named as the adaptive grey-Markov prediction model for incomplete and complex dynamic systems. This model displays favorable adaptability, flexibility and universality because of four advantages. Firstly, because of the randomness and non-repeatability of time series, the paper proposes adaptive exponential accumulated generating operators to describe different contribution degrees of historical information to future change trends of system characteristics. Secondly, this paper proposes a new paradigm of adaptive grey background value, which can automatically adjust parameters based on historical information to optimize this model and reduce prediction errors. Thirdly, the optimization model based on average absolute percentage error is constructed, and the corresponding adaptive parameters are searched by Ant lion Optimizer algorithm. Fourthly, this model consists of a quadratic polynomial function describing nonlinearity and a periodic function generated by a Fourier series characterizing noise and period. Thereupon, the adaptive odd-period grey model is proposed. Its residual modified model, named as adaptive grey-Markov modified model, is given based on Markov chain (MC) and virtual linguistic trust degree (VLTD) to further improve prediction accuracy. The modified values of absolute errors are determined by the score functions produced from trust degrees of absolute errors to states on MC calculated by VLTD method. This modified way retains the influence degrees of absolute errors on the modified values and improves the prediction accuracy. Finally, the paper further demonstrates performance and practicability of the proposed prediction model through predicting passenger flow of Chengdu Metro Linel and comparative analysis.
机译:研究表明,与全局预测方法相比,局部预测方法表现出更好的预测性能。该文提出了一种新的局部预测模型,称为自适应灰色马尔可夫预测模型,用于不完全和复杂的动态系统。该模型具有适应性、灵活性和通用性四大优点。首先,针对时间序列的随机性和不可重复性,提出自适应指数累积生成算子来描述历史信息对系统特征未来变化趋势的不同贡献程度;其次,提出了一种新的自适应灰色背景值范式,该范式可以根据历史信息自动调整参数,从而优化该模型并减少预测误差。然后,构建基于平均绝对百分比误差的优化模型,并利用蚂蚁狮优化器算法搜索相应的自适应参数;第四,该模型由描述非线性的二次多项式函数和描述噪声和周期的傅里叶级数生成的周期函数组成。在此基础上,提出了自适应奇数周期灰色模型。该模型基于马尔可夫链(MC)和虚拟语言信任度(VLTD)给出了自适应灰色马尔可夫修正模型,以进一步提高预测精度。修改后的绝对误差值由VLTD方法计算的绝对误差对MC状态的信任度产生的评分函数确定。这种修正方法保留了绝对误差对修正值的影响程度,提高了预测精度。最后,通过对成都地铁线内线客流的预测和对比分析,进一步论证了所提预测模型的性能和实用性。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号