首页> 外文期刊>Energy conversion & management >Investigating the product distribution behaviour of CO_2 methanation through thermodynamic optimized experimental approach using micro/nano structured titania catalyst
【24h】

Investigating the product distribution behaviour of CO_2 methanation through thermodynamic optimized experimental approach using micro/nano structured titania catalyst

机译:利用微纳结构二氧化钛催化剂的热力学优化实验方法研究CO_2甲烷化的产物分布行为

获取原文
获取原文并翻译 | 示例

摘要

Catalytic CO2 hydrogenation yields a wide range of products, making products selectivity a major challenge. This study provides a comprehensive investigation on CO2 hydrogenation to CH4 by involving thermodynamic optimized experimental approach. First, thermodynamic analysis was carried out using equilibrium rate constants and Gibbs free and insights on the behaviour and product distribution of CO2 methanation were investigated. A low temperature (150-450 degrees C), elevated pressure and H-2/CO2 feed ratio above 4 are essential for CH4 production. More importantly, as temperature rises, the product formation shifts from CH4 to CO, C2H6 and finally solid carbon. Upon thermodynamic optimization, an experimental approach was conducted using micro/nano structured conductive catalysts. CO2 methanation over Ni-dispersed conductive TiO2 microparticles (MPs)/nanowires (NWs) catalysts involves various complex reactions such as the adsorption, desorption and activation of molecules. An ideal Ni loading of 15 wt, with GHSV of 6,300 mL.g(-1)h(-1) is beneficial for the CH4 production. Furthermore, TiO2 NWs provided a 1.32-fold enhancement in activity and CH4 production comparing to MPs, elucidating the enhancement effect of a one-dimensional (1D) nanowire structure over zero-dimensional (0D) spherical microparticle structure. Y-CH4, S-CH4 and X-CO2 over 15 Ni/TiO2 NWs achieved 88.9, 99.1 and 89.8, respectively. Despite a good agreement between the thermodynamic and experimental results, there was a slight difference in trend because the theoretical values can be obtained by just considering the feasibility of reactions in terms of Delta G and ln (K). Besides, catalytic experimental runs involves complex reactions through adsorption and desorption, leading to CH4 formation via different pathways. Due to the conductive characteristics and 1D structure of TiO2, the products distribution was close to thermodynamics value and exhibited higher stability that would be beneficial for further investigation in catalytic reactions.
机译:催化CO2加氢可产生多种产品,使产品选择性成为一项重大挑战。本研究采用热力学优化实验方法,对CO2加氢制CH4进行了全面的研究。首先,使用平衡速率常数和吉布斯自由进行热力学分析,并研究了CO2甲烷化的行为和产物分布。低温(150-450°C)、高压和高于4的H-2/CO2进料比对于CH4生产至关重要。更重要的是,随着温度的升高,产物的形成从CH4转变为CO,C2H6,最后是固体碳。在热力学优化的基础上,采用微纳结构导电催化剂进行了实验。在镍分散导电TiO2微粒(MPs)/纳米线(NWs)催化剂上的CO2甲烷化涉及分子的吸附、解吸和活化等各种复杂反应。理想的Ni负载量为15 wt%,GHSV为6,300 mL.g(-1)h(-1)有利于CH4的产生。此外,与MPs相比,TiO2 NWs的活性和CH4产量提高了1.32倍,阐明了一维(1D)纳米线结构对零维(0D)球形微粒结构的增强效果。Ni/TiO2 NWs含量超过15%的Y-CH4、S-CH4和X-CO2分别达到88.9%、99.1%和89.8%。尽管热力学和实验结果之间有很好的一致性,但趋势上略有不同,因为理论值可以通过仅考虑Delta G和ln(K)反应的可行性来获得。此外,催化实验运行涉及通过吸附和解吸的复杂反应,导致通过不同途径形成CH4。由于TiO2的导电特性和一维结构,其产物分布接近热力学值,表现出更高的稳定性,有利于进一步研究催化反应。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号