首页> 外文期刊>Atmospheric chemistry and physics >What drives the observed variability of HCN in the troposphere and lower stratosphere?
【24h】

What drives the observed variability of HCN in the troposphere and lower stratosphere?

机译:是什么驱动了对流层和低平流层中HCN的观测变异性?

获取原文
获取原文并翻译 | 示例
           

摘要

We use the GEOS-Chem global 3-D chemistry transport model to investigate the relative importance of chemical and physical processes that determine observed variability of hydrogen cyanide (HCN) in the troposphere and lower stratosphere. Consequently, we reconcile ground-based FTIR column measurements of HCN, which show annual and semi-annual variations, with recent space-borne measurements of HCN mixing ratio in the tropical lower stratosphere, which show a large two-year variation. We find that the observed column variability over the ground-based stations is determined by a superposition of HCN from several regional burning sources, with GEOS-Chem reproducing these column data with a positive bias of 5%. GEOS-Chem reproduces the observed HCN mixing ratio from the Microwave Limb Sounder and the Atmospheric Chemistry Experiment satellite instruments with a mean negative bias of 20%, and the observed HCN variability with a mean negative bias of 7%. We show that tropical biomass burning emissions explain most of the observed HCN variations in the upper troposphere and lower stratosphere (UTLS), with the remainder due to atmospheric transport and HCN chemistry. In the mid and upper stratosphere, atmospheric dynamics progressively exerts more influence on HCN variations. The extent of temporal overlap between African and other continental burning seasons is key in establishing the apparent bienniel cycle in the UTLS. Similar analysis of other, shorter-lived trace gases have not observed the transition between annual and bienniel cycles in the UTLS probably because the signal of inter-annual variations from surface emission has been diluted before arriving at the lower stratosphere (LS), due to shorter atmospheric lifetimes.
机译:我们使用GEOS-Chem全球3-D化学迁移模型来研究化学和物理过程的相对重要性,这些过程确定对流层和低平流层中观测到的氰化氢(HCN)变异性。因此,我们调和了HCN的地面FTIR色谱柱测量值,该值显示了年度和半年变化,而最近对热带低平流层中HCN混合比的星载测量显示了两年的较大变化。我们发现,地面站观测到的柱变异性是由来自几个区域燃烧源的HCN叠加确定的,而GEOS-Chem以5%的正偏差重现了这些柱数据。 GEOS-Chem从微波四肢测深仪和大气化学实验卫星仪器中再现了观察到的HCN混合比,平均负偏差为20%,观察到的HCN变异性为平均负偏差为7%。我们表明,热带生物质燃烧排放解释了对流层和平流层下层(UTLS)观测到的大多数HCN变化,其余部分归因于大气迁移和HCN化学。在平流层中层和高层,大气动力学逐渐对HCN变化产生更大的影响。非洲和其他大陆燃烧季节之间的时间重叠程度是在UTLS中建立明显的双年轮周期的关键。对其他寿命较短的痕量气体的类似分析未在UTLS中观察到年循环和双年循环之间的过渡,这可能是由于来自地表发射的年际变化信号在到达低平流层(LS)之前已经被稀释了。较短的大气寿命。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号