...
首页> 外文期刊>Atmospheric chemistry and physics >Seasonal and interannual variations in HCN amounts in the upper troposphere and lower stratosphere observed by MIPAS
【24h】

Seasonal and interannual variations in HCN amounts in the upper troposphere and lower stratosphere observed by MIPAS

机译:MIPAS观测到对流层上部和平流层下部HCN含量的季节性和年际变化

获取原文
获取原文并翻译 | 示例
           

摘要

We present a HCN climatology of the years 20022012, derived from FTIR limb emission spectra measured with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on the ENVISAT satellite, with the main focus on biomass burning signatures in the upper troposphere and lower stratosphere. HCN is an almost unambiguous tracer of biomass burning with a tropospheric lifetime of 5-6 months and a stratospheric lifetime of about 2 years. The MIPAS climatology is in good agreement with the HCN distribution obtained by the spaceborne ACE-FTS experiment and with airborne in situ measurements performed during the INTEX-B campaign. The HCN amounts observed by MIPAS in the southern tropical and subtropical upper troposphere have an annual cycle peaking in October-November, i. e. 1-2 months after the maximum of southern hemispheric fire emissions. The probable reason for the time shift is the delayed onset of deep convection towards austral summer. Because of overlap of varying biomass burning emissions from South America and southern Africa with sporadically strong contributions from Indonesia, the size and strength of the southern hemispheric plume have considerable interannual variations, with monthly mean maxima at, for example, 14 km between 400 and more than 700 pptv. Within 12 months after appearance of the plume, a considerable portion of the enhanced HCN is transported southward to as far as Antarctic latitudes. The fundamental period of HCN variability in the northern upper troposphere is also an annual cycle with varying amplitude, which in the tropics peaks in May after and during the biomass burning seasons in northern tropical Africa and southern Asia, and in the subtropics peaks in July due to trapping of pollutants in the Asian monsoon anticyclone (AMA). However, caused by extensive biomass burning in Indonesia and by northward transport of part of the southern hemispheric plume, northern HCN maxima also occur around October/November in several years, which leads to semi-annual cycles. There is also a temporal shift between enhanced HCN in northern low and mid-to high latitudes, indicating northward transport of pollutants. Due to additional biomass burning at mid-and high latitudes, this meridional transport pattern is not as clear as in the Southern Hemisphere. Upper tropospheric HCN volume mixing ratios (VMRs) above the tropical oceans decrease to below 200 pptv, presumably caused by ocean uptake, especially during boreal winter and spring. The tropical stratospheric tape recorder signal with an apparently biennial period, which was detected in MLS and ACE-FTS data from mid-2004 to mid-2007, is corroborated by MIPAS HCN data. The tape recorder signal in the whole MIPAS data set exhibits periodicities of 2 and 4 years, which are generated by interannual variations in biomass burning. The positive anomalies of the years 2003, 2007 and 2011 are caused by succession of strongly enhanced HCN from southern hemispheric and Indonesian biomass burning in boreal autumn and of elevated HCN from northern tropical Africa and the AMA in subsequent spring and summer. The anomaly of 2005 seems to be due to springtime emissions from tropical Africa followed by release from the summertime AMA. The vertical transport time of the anomalies is 1 month or less between 14 and 17 km in the upper troposphere and 8-11 months between 17 and 25 km in the lower stratosphere.
机译:我们介绍了20022012年的HCN气候,其源于使用ENVISAT卫星上的迈克尔逊被动大气探测(MIPAS)干涉仪测量的FTIR肢体发射光谱,主要研究了对流层上部和平流层下部的生物质燃烧特征。 HCN是几乎清晰的生物质燃烧示踪剂,对流层寿命为5-6个月,平流层寿命为约2年。 MIPAS的气候与通过航天ACE-FTS实验获得的HCN分布以及在INTEX-B战役期间进行的机载原位测量非常吻合。在南部热带和亚热带对流层中,由MIPAS观测到的HCN量的年度周期在10月至11月即最高。 e。南半球最大火灾排放后的1-2个月。时间偏移的可能原因是深对流向南半球夏季推迟的开始。由于南美和南非的生物质燃烧排放量各不相同,而印度尼西亚的贡献却是零星的,因此南半球羽流的大小和强度每年都有较大的变化,例如,月平均最大值在400至400之间的14 km超过700 pptv。羽状流出现后的12个月内,增强型HCN的相当一部分被向南输送至南极纬度。北部对流层中HCN变异的基本周期也是一个年周期,其幅度有所变化,在热带北部非洲和南亚生物量燃烧季节之后和期间,热带地区在5月达到峰值,而在7月,亚热带在7月达到峰值。捕获亚洲季风反气旋(AMA)中的污染物。然而,由于印度尼西亚大量生物质燃烧和南半球羽流的一部分向北输送,HCN最大值也在数年的10月/ 11月左右发生,导致半年周期。北部低纬度和中高纬度的增强型HCN之间也存在时间变化,表明污染物向北迁移。由于在中高纬度地区还会燃烧额外的生物质,因此这种子午线运输方式并不像南半球那样清晰。热带海洋上方的对流层HCN体积混合比上限(VMRs)降至200 pptv以下,这可能是由于海洋吸收,特别是在寒冬和春季期间。 MIPAS HCN数据证实了在2004年中至2007年中的MLS和ACE-FTS数据中检测到的热带平流层带记录器信号明显为两年期。整个MIPAS数据集中的录音机信号显示2年和4年的周期,这是由生物质燃烧的年际变化产生的。 2003年,2007年和2011年的正异常是由于北半球的HCN和印度尼西亚生物量燃烧在北半球秋季强烈增强的HCN和随后的春季和夏季在热带北部非洲和AMA的HCN升高引起的。 2005年的异常现象似乎是由于热带非洲的春季排放,然后是夏季AMA释放的。在高对流层中,异常的垂直传输时间在14至17 km之间为1个月或更短,在低平流层中在17至25 km之间为8-11个月或更短。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号