首页> 外文期刊>Molecular diversity >Evaluation of tea (Camellia sinensis L.) phytochemicals as multi-disease modulators, a multidimensional in silico strategy with the combinations of network pharmacology, pharmacophore analysis, statistics and molecular docking
【24h】

Evaluation of tea (Camellia sinensis L.) phytochemicals as multi-disease modulators, a multidimensional in silico strategy with the combinations of network pharmacology, pharmacophore analysis, statistics and molecular docking

机译:茶叶(Camellia sinensis L.)植物化学物质作为多病害调节剂的评价,网络药理学、药效团分析、统计学和分子对接相结合的多维计算机策略

获取原文
获取原文并翻译 | 示例

摘要

Tea (Camellia sinensis L.) is considered as to be one of the most consumed beverages globally and a reservoir of phytochemicals with immense health benefits. Despite numerous advantages, tea compounds lack a robust multi-disease target study. In this work, we presented a unique in silico approach consisting of molecular docking, multivariate statistics, pharmacophore analysis, and network pharmacology approaches. Eight tea phytochemicals were identified through literature mining, namely gallic acid, catechin, epigallocatechin gallate, epicatechin, epicatechin gallate (ECG), quercetin, kaempferol, and ellagic acid, based on their richness in tea leaves. Further, exploration of databases revealed 30 target proteins related to the pharmacological properties of tea compounds and multiple associated diseases. Molecular docking experiment with eight tea compounds and all 30 proteins revealed that except gallic acid all other seven phytochemicals had potential inhibitory activities against these targets. The docking experiment was validated by comparing the binding affinities (Kcal mol(-1)) of the compounds with known drug molecules for the respective proteins. Further, with the aid of the application of statistical tools (principal component analysis and clustering), we identified two major clusters of phytochemicals based on their chemical properties and docking scores (Kcal mol(-1)). Pharmacophore analysis of these clusters revealed the functional descriptors of phytochemicals, related to the ligand-protein docking interactions. Tripartite network was constructed based on the docking scores, and it consisted of seven tea phytochemicals (gallic acid was excluded) targeting five proteins and ten associated diseases. Epicatechin gallate (ECG)-hepatocyte growth factor receptor (PDB id 1FYR) complex was found to be highest in docking performance (10 kcal mol(-1)). Finally, molecular dynamic simulation showed that ECG-1FYR could make a stable complex in the near-native physiological condition. GRAPHICS .
机译:茶(Camellia sinensis L.)被认为是全球消费量最大的饮料之一,也是具有巨大健康益处的植物化学物质库。尽管具有许多优点,但茶化合物缺乏可靠的多疾病靶点研究。在这项工作中,我们提出了一种独特的计算机模拟方法,包括分子对接、多元统计、药效团分析和网络药理学方法。根据茶叶中丰富的含量,通过文献挖掘鉴定出8种茶植物化学物质,即没食子酸、儿茶素、表没食子儿茶素没食子酸酯、表儿茶素没食子酸酯(ECG)、槲皮素、山奈酚和鞣花酸。此外,对数据库的探索揭示了 30 种与茶化合物和多种相关疾病的药理特性相关的靶蛋白。对8种茶化合物和30种蛋白质的分子对接实验表明,除没食子酸外,其他7种植物化学物质均对这些靶标具有潜在的抑制活性。通过比较化合物与已知药物分子对各自蛋白质的结合亲和力(Kcal mol(-1))来验证对接实验的有效性。此外,借助统计工具(主成分分析和聚类),我们根据植物化学物质的化学性质和对接分数(Kcal mol(-1))确定了两大植物化学物质集群。这些簇的药效团分析揭示了植物化学物质的功能描述符,与配体-蛋白质对接相互作用有关。基于对接评分构建三方网络,由7种茶植物化学物质(不含没食子酸)组成,靶向5种蛋白质和10种相关疾病。表儿茶素没食子酸酯 (ECG)-肝细胞生长因子受体 (PDB id 1FYR) 复合物的对接性能最高 (10 kcal mol(-1))。最后,分子动力学模拟表明,ECG-1FYR在接近天然的生理条件下可以形成稳定的复合物。[图形] .

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号