首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America. >X-ray nanodiffraction imaging reveals distinct nanoscopic dynamics of an ultrafast phase transition
【24h】

X-ray nanodiffraction imaging reveals distinct nanoscopic dynamics of an ultrafast phase transition

机译:X射线纳米衍射成像揭示了超快相变的独特纳米动力学

获取原文
获取原文并翻译 | 示例

摘要

Ultrafast first-order phase transitions exhibit distinct transition pathways and dynamical properties that are not accessible during quasi-equilibrium transitions. Phenomena arising at the ultrafast timescale are important for understanding the transition mechanisms and in applications using the fast switching of electronic properties or magnetism. These transitions are accompanied by nanoscale structural dynamics that have been challenging to explore by optical or electronic transport probes. Here, X-ray nanodiffraction imaging shows that the nanoscale structural dynamics arising in ultrafast phase transitions differ dramatically from the transitions under slowly varying parameters. The solid-solid phase transitions in a FeRh thin film involve concurrent structural and magnetic changes and can be sensitively probed by monitoring their diffraction signatures following femtosecond optical excitation. Time-dependent nanodiffraction maps with 100-ps temporal and 25-nm spatial resolutions reveal that the preexisting nanoscale variation in phase composition results in spatially inhomogeneous changes of phase fraction after ultrafast optical excitation. The spatial inhomogeneity leads to nanoscale temperature variations and subsequent in-plane heat transport, which are responsible for spatially distinct relaxation pathways on nanometer length scales. The spatial gradients of the phase composition and elastic strain increase upon excitation rather than exhibiting the decrease previously reported in quasi-equilibrium transformations. Long-range elastic interactions thus do not play significant roles in the ultrafast phase transition. These microscopic insights into first-order phase transitions provide routes to manipulate nanoscopic phases in functional materials on ultrafast time scales by engineering initial nanoscale phase distributions.
机译:超快的一阶相变表现出独特的相变路径和动力学特性,这些特性在准平衡相变期间是无法获得的。在超快时间尺度上出现的现象对于理解跃迁机制以及使用电子特性或磁性的快速切换的应用非常重要。这些转变伴随着纳米级结构动力学,光学或电子传输探针难以探索这些动力学。在这里,X射线纳米衍射成像表明,在超快相变中产生的纳米级结构动力学与缓慢变化参数下的相变有很大不同。FeRh薄膜中的固-固相变涉及同时发生的结构和磁性变化,可以通过监测飞秒光学激发后的衍射特征来灵敏地探测。时间和空间分辨率为100 ps、空间分辨率为25 nm的瞬态纳米衍射图显示,超快光激发后,相组成中预先存在的纳米级变化导致相分数在空间上不均匀变化。空间不均匀性导致纳米级温度变化和随后的面内热传递,这是纳米长度尺度上空间上不同的弛豫路径的原因。相组成和弹性应变的空间梯度在激发时增加,而不是表现出先前在准平衡变换中报道的减小。因此,长程弹性相互作用在超快相变中起着重要作用。这些对一阶相变的微观见解提供了通过设计初始纳米级相分布在超快时间尺度上操纵功能材料中的纳米相的途径。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号