首页>
外文期刊>Network Daily News
>Researchers at Xi’an Technological University Release New Data on Network Monitoring and Controls (Super-resolution Image Reconstruction Based on Double Regression Network Model)
【24h】
Researchers at Xi’an Technological University Release New Data on Network Monitoring and Controls (Super-resolution Image Reconstruction Based on Double Regression Network Model)
By a News Reporter-Staff News Editor at Network Daily News - Researchersdetail new data in network monitoring and controls. According to news reporting originating from Xi’an,People’s Republic of China, by NewsRx correspondents, research stated, “By learning nonlinear mappingfunctions from low resolution (LR) images to high resolution (HR) images, deep neural networks showgood performance in image super-resolution (SR).”Our news editors obtained a quote from the research from Xi’an Technological University: “However,the existing SR approach has two potential limitations. First, learning the mapping function from LR toHR images is usually an ill-conditioned problem, since there exist an infinite number of HR images thatcan be down-sampled to the same LR image. Thus, the space of possible functions can be very large,making it difficult to find a good solution. Second, paired LR-HR data may not be available in real-worldapplications, and the underlying degradation method is often unknown. For this more general case, existingSR models tend to generate adaptive problems and produce poor performance.”
展开▼
机译:作者:网络日报新闻的新闻记者-新闻编辑 - 研究人员详细介绍了网络监测和控制方面的新数据。根据NewsRx记者在中华人民共和国习的新闻报道,研究表明,“通过学习从低分辨率(LR)图像到高分辨率(HR)图像的非线性映射函数,深度神经网络在图像超分辨率(SR)中表现出良好的性能。我们的新闻编辑从习工业大学的研究中获得了一句话:“然而,现有的SR方法有两个潜在的局限性。首先,学习从 LR 到 HR 图像的映射函数通常是一个条件不佳的问题,因为存在无限数量的 HR 图像可以下采样到相同的 LR 图像。因此,可能的功能空间可能非常大,因此很难找到一个好的解决方案。其次,配对的LR-HR数据在实际应用中可能不可用,并且潜在的降解方法通常是未知的。对于这种更普遍的情况,现有的SR模型往往会产生自适应问题并产生较差的性能。
展开▼