首页> 外文期刊>Journal of Engineering Mechanics >Identification of Frequencies and Track Irregularities of Railway Bridges Using Vehicle Responses: A Recursive Bayesian Kalman Filter Algorithm
【24h】

Identification of Frequencies and Track Irregularities of Railway Bridges Using Vehicle Responses: A Recursive Bayesian Kalman Filter Algorithm

机译:基于车辆响应的铁路桥梁频率和轨道不平整识别:一种递归贝叶斯卡尔曼滤波算法

获取原文
获取原文并翻译 | 示例

摘要

On-board monitoring of track irregularities and bridge dynamic characteristics based on vehicle vibration responses provides basic data for the condition assessment of high speed railway bridges. However, the identification process inevitably introduces estimation uncertainty because of measurement noise and system parameter uncertainty. Here, in a probability framework, we propose a recursive Bayesian Kalman filtering (RBKF) algorithm for quantifying the identification uncertainty of the track irregularities and bridge natural frequencies. A nonlinear state-space model with measurement noise and process noise was first established for vehicle-bridge (VB) systems. Then the RBKF algorithm was formulated using a nonlinear state-space model, and the identification uncertainty was quantified in terms of estimation variances. A numerical study of two high speed railway bridges validated the RBKF algorithm. This study may help develop new approaches for on-board monitoring and condition assessment of high speed railway bridges.
机译:基于车辆振动响应的轨道不平整和桥梁动力特性的车载监测,为高速铁路桥梁的状况评估提供了基础数据。然而,由于测量噪声和系统参数的不确定性,识别过程不可避免地会引入估计不确定性。在此,在概率框架中,我们提出了一种递归贝叶斯卡尔曼滤波(RBKF)算法,用于量化航迹不规则和桥接固有频率的识别不确定性。首先为车桥(VB)系统建立了具有测量噪声和过程噪声的非线性状态空间模型。然后,利用非线性状态空间模型制定RBKF算法,并利用估计方差对识别不确定性进行量化。对两座高速铁路桥梁的数值研究验证了RBKF算法的有效性。本研究有助于开发高速铁路桥梁车载监测和状态评估的新方法。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号