首页> 外文期刊>Icarus: International Journal of Solar System Studies >Nonuniform cratering of the Moon and a revised crater chronology of the inner Solar System
【24h】

Nonuniform cratering of the Moon and a revised crater chronology of the inner Solar System

机译:月球的不均匀陨石坑和内部太阳系的陨石坑年表修订

获取原文
获取原文并翻译 | 示例
           

摘要

We model the cratering of the Moon and terrestrial planets from the present knowledge of the orbital and size distribution of asteroids and comets in the inner Solar System, in order to refine the crater chronology method. Impact occurrences, locations, velocities and incidence angles are calculated semi-analytically, and scaling laws are used to convert impactor sizes into crater sizes. Our approach is generalizable to other moons or planets. The lunar cratering rate varies with both latitude and longitude: with respect to the global average, it is about 25% lower at (±65°N,. 90°E) and larger by the same amount at the apex of motion (0°N,. 90°W) for the present Earth-Moon separation. The measured size-frequency distributions of lunar craters are reconciled with the observed population of near-Earth objects under the assumption that craters smaller than a few kilometers in diameter form in a porous megaregolith. Varying depths of this megaregolith between the mare and highlands is a plausible partial explanation for differences in previously reported measured size-frequency distributions. We give a revised analytical relationship between the number of craters and the age of a lunar surface. For the inner planets, expected size-frequency crater distributions are calculated that account for differences in impact conditions, and the age of a few key geologic units is given. We estimate the Orientale and Caloris basins to be 3.73. Ga old, and the surface of Venus to be 240. Ma old. The terrestrial cratering record is consistent with the revised chronology and a constant impact rate over the last 400. Ma. Better knowledge of the orbital dynamics, crater scaling laws and megaregolith properties are needed to confidently assess the net uncertainty of the model ages that result from the combination of numerous steps, from the observation of asteroids to the formation of craters. Our model may be inaccurate for periods prior to 3.5. Ga because of a different impactor population, or for craters smaller than a few kilometers on Mars and Mercury, due to the presence of subsurface ice and to the abundance of large secondaries, respectively. Standard parameter values allow for the first time to naturally reproduce both the size distribution and absolute number of lunar craters up to 3.5. Ga ago, and give self-consistent estimates of the planetary cratering rates relative to the Moon.
机译:我们根据目前太阳系内部小行星和彗星的轨道和大小分布的知识,对月球和地球行星的陨石坑进行建模,以完善陨石坑的年代学方法。碰撞的发生,位置,速度和入射角都是半解析计算的,并且使用缩放定律将碰撞器的尺寸转换为弹坑尺寸。我们的方法可以推广到其他卫星或行星。月球陨石坑的速率随纬度和经度而变化:相对于全球平均水平,在(±65°N,.90°E)时它低约25%,而在运动顶点(0° N ,. 90°W),用于当前的月球间隔。在一个直径小于几公里的环形山形成于多孔巨砾岩中的假设下,测得的月球环形山的尺寸-频率分布与观察到的近地物体的数量一致。在母马和高地之间这种巨砾岩的深度变化是对先前报道的测得的尺寸-频率分布差异的合理解释。我们给出了陨石坑数量和月球表面年龄之间的修正分析关系。对于内行星,计算了预期的大小-频率陨石坑分布,该分布考虑了撞击条件的差异,并给出了一些关键地质单元的年龄。我们估计Orientale和Caloris盆地为3.73。嘎老,金星表面要240。玛老。地球上的火山口记录与修订后的时间顺序一致,并且在过去的400年中具有恒定的撞击率。为了更自信地评估从观测小行星到形成陨石坑的众多步骤所导致的模型年龄的净不确定性,需要对轨道动力学,陨石坑定标规律和巨灰岩性质有更好的了解。对于3.5之前的时期,我们的模型可能不准确。由于存在不同的撞击物,或者由于火星和水星上小于几公里的陨石坑,分别由于Ga的存在,Ga的存在。标准参数值首次允许自然再现月球陨石坑的大小分布和绝对数量,最高可达3.5。例如,在Ga之前,对行星相对于月球的陨石坑率做出一致的估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号