首页> 外文期刊>ACM transactions on interactive intelligent systems >ForSense: Accelerating Online Research Through Sensemaking Integration and Machine Research Support
【24h】

ForSense: Accelerating Online Research Through Sensemaking Integration and Machine Research Support

机译:ForSense:通过意义建构集成和机器研究支持加速在线研究

获取原文
获取原文并翻译 | 示例

摘要

Online research is a frequent and important activity people perform on the Internet, yet current support for this task is basic, fragmented and not well integrated into web browser experiences. Guided by sensemaking theory, we present ForSense, a browser extension for accelerating people's online research experience. The two primary sources of novelty of ForSense are the integration of multiple stages of online research and providing machine assistance to the user by leveraging recent advances in neural-driven machine reading. We use ForSense as a design probe to explore (1) the benefits of integrating multiple stages of online research, (2) the opportunities to accelerate online research using current advances in machine reading, (3) the opportunities to support online research tasks in the presence of imprecise machine suggestions, and (4) insights about the behaviors people exhibit when performing online research, the pages they visit, and the artifacts they create. Through our design probe, we observe people performing online research tasks, and see that they benefit from ForSense's integration and machine support for online research. From the information and insights we collected, we derive and share key recommendations for designing and supporting imprecise machine assistance for research tasks.
机译:在线研究是人们在 Internet 上执行的一项频繁且重要的活动,但目前对这项任务的支持是基本的、零散的,并且没有很好地集成到 Web 浏览器体验中。在意义建构理论的指导下,我们提出了ForSense,这是一个用于加速人们在线研究体验的浏览器扩展。ForSense 的两个主要新颖性来源是整合了在线研究的多个阶段,并通过利用神经驱动的机器阅读的最新进展为用户提供机器帮助。我们使用 ForSense 作为设计探针来探索 (1) 整合在线研究的多个阶段的好处,(2) 利用当前机器阅读的进步加速在线研究的机会,(3) 在存在不精确的机器建议的情况下支持在线研究任务的机会,以及 (4) 关于人们在进行在线研究时表现出的行为的见解, 他们访问的页面,以及他们创建的工件。通过我们的设计探针,我们观察了执行在线研究任务的人们,并发现他们受益于 ForSense 对在线研究的集成和机器支持。从我们收集的信息和见解中,我们得出并分享了为研究任务设计和支持不精确机器辅助的关键建议。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号